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Abstract
This thesis investigates new motion anchoring strategies that are targeted at
wavelet-based highly scalable video compression (WSVC). We depart from
two practices that are deeply ingrained in existing video compression systems.
Instead of the commonly used block motion, which has poor scalability at-
tributes, we employ piecewise-smooth motion together with a highly scalable
motion boundary description. The combination of this more “physical” mo-
tion description together with motion discontinuity information allows us to
change the conventional strategy of anchoring motion at target frames to an-
choring motion at reference frames, which improves motion inference across
time.

In the proposed reference-based motion anchoring strategies, motion fields
are mapped from reference to target frames, where they serve as prediction
references; during this mapping process, disoccluded regions are readily discov-
ered. Observing that motion discontinuities displace with foreground objects,
we propose motion-discontinuity driven motion mapping operations that han-
dle traditionally challenging regions around moving objects. The reference-
based motion anchoring exposes an intricate connection between temporal
frame interpolation (TFI) and video compression. When employed in a com-
pression system, all anchoring strategies explored in this thesis perform TFI
once all residual information is quantized to zero at a given temporal level.
The interpolation performance is evaluated on both natural and synthetic
sequences, where we show favourable comparisons with state-of-the-art TFI
schemes.

We explore three reference-based motion anchoring strategies. In the first
one, the motion anchoring is “flipped” with respect to a hierarchical B-frame
structure. We develop an analytical model to determine the weights of the
different spatio-temporal subbands, and assess the suitability and benefits of
this reference-based WSVC for (highly scalable) video compression. Reduced
motion coding cost and improved frame prediction, especially around moving
objects, result in improved rate-distortion performance compared to a target-
based WSVC. As the thesis evolves, the motion anchoring is progressively
simplified to one where all motion is anchored at one base frame; this cen-
tral motion organization facilitates the incorporation of higher-order motion
models, which improve the prediction performance in regions following motion
with non-constant velocity.
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1 Introduction

Video content accounted for almost two thirds of the world’s consumer internet
traffic in 2014, and is predicted to account for 80% by 2020; by the end of
this decade, it is expected that almost one million minutes of video content
will cross global IP networks every second [1]. According to Sandvine’s 2016
“Global Internet Phenomena Report” [2], video streaming accounts for over
60% of peak-hour broadband internet traffic consumption in North America,
with Netflix (35%) and YouTube (18%) being the main contributors. In a video
streaming scenario, a variety of users with different resources in terms of screen
size, resolution, processing power, and network bandwidth, are accessing the
same video content, as illustrated in Fig. 1.1. Currently, the heterogeneous

Figure 1.1: In a video streaming scenario, multiple users are accessing the same video over
a heterogeneous network. Their devices also have quite different display sizes, resolutions,
and bandwidth. Existing compression systems are ill-suited to serve the large variability,
and video content has to be encoded multiple times.

requirements of web streaming are met by storing hundreds of copies of the
same video on the server [3]. Clearly, there exists a lot of redundancy between
the different copies; the reason for this “wasteful” storage is that existing
video coding standards (e.g., H.264/AVC [4] and HEVC [5]) are optimized for
a predefined set of network and decoder constraints.

Scalable video compression presents a promising solution to the above-
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Chapter 1. Introduction

mentioned problem. Instead of coding the same video at different quality
levels, the media is encoded in an embedded way, such that partial bit-streams
can be decoded at lower resolution (spatial scalability), frame-rate (temporal
scalability), as well as quality (SNR scalability). The importance of scalabil-
ity for the delivery of video content over heterogeneous networks is evidenced
by the fact that the two latest video compression standards both have scal-
able extensions (H.264/SVC [6] and SHVC [7]). However, being extensions of
single-layer codecs, they inherit the predictive feedback loop that is used to
exploit temporal redundancy between frames, which severely hampers scala-
bility; in fact, for practical applications, the number of different quality layers
is limited to just a few.

The last decade has witnessed a trend towards higher resolutions (ultra-
high definition 4K and 8K formats) and higher framerates in video. Latest
mobile phones offer video recording capabilities of up to 4K (2160p) at 30
frames per second, making the creation of high (to ultra high) resolution video
content ubiquitous. However, 4K displays are still relatively uncommon, both
in TV units as well as mobile phones, which means that in most cases, there are
more pixels recorded than can be displayed. Recently, cameras that record full
360 degree video content emerged [8], where the user can freely choose which
portion to view. With current video compression standards, the full 360 video
has to be streamed, even though only a small portion is actually displayed.
These are just some examples that indicate that “efficient” interactive browsing
of video content will become increasingly important over the next decade,
which requires some fundamental changes in the way videos are encoded. More
“feature-rich” coders that offer high scalability and region of interest (ROI)
access to decode only a “window” of the actual encoded content would be
highly beneficial.

JPEG2000 [9] is a family of standards that provides high scalability and
accessibility features for image (and video) content. JPEG2000 interactive
protocol (JPIP) [10] brings an interactive browsing framework to JPEG2000,
which provides very interesting opportunities for interactive browsing of video
content; however, it is currently limited to independently coded JPEG2000
frames, without exploiting temporal redundancies (known as “inter” predic-
tion) between the frames, which lowers the compression performance.

Various wavelet-based scalable video coding (WSVC) schemes have been
proposed, which extend the discrete wavelet transform (DWT) employed by
JPEG2000 to the temporal domain; the absence of a prediction feedback loop
makes such schemes much better suited for high scalability. The success of
WSVC schemes has mostly been limited by the fact that scalable video coders
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have problems at discontinuities in the motion field [11]; band-limited sam-
pling of motion fields smooths out the sharp transitions at moving object
boundaries, creating “non-physical” motion – a value interpolated between
the motion of the foreground and the background object is in general a poor
predictor. A number of works in video compression have demonstrated the
benefits of partitioning motion fields based on their motion discontinuities
[12–14]. Recently, a highly scalable way of representing discontinuities in a
progressively refineable way has been proposed [15]. So-called “breakpoints”
are used to signal discontinuities to adapt the wavelet bases from crossing dis-
continuity boundaries, which enables an efficient, scalable coding of motion
fields.

The aim of this thesis is to improve the temporal transform used in wavelet-
based scalable video coding. Our work is focused more towards “physical”1

motion fields, and breakpoints are used to explicitly and efficiently describe
motion discontinuities. We show that such an approach can provide many
advantages for video compression, especially for scalable video coders. The
objective here is to eliminate artificial block boundaries, while efficiently de-
scribing true discontinuities in the motion flow. While the use of optical flow
motion for video compression recently has gained more interest [16, 17], the
motion information has so far been attached to the target frame that is to be
predicted. In this thesis, we show that the combination of physical motion
and motion discontinuities allows us to “flip” the anchoring of motion fields
to reference frames compared to conventional video codecs, which turns out
to have a number of advantages; for example, foreground/background objects
can be identified which are required to perform motion inference across time.

In such a reference-based motion field anchoring, the motion-compensation
prediction found in traditional compression schemes is essentially replaced by
temporal frame interpolation (TFI). That is, in order to serve as prediction
reference, motion information has to be mapped from reference to the target
frame. We show in this thesis how motion discontinuities can be used to
handle traditionally problematic regions around moving objects. During the
motion warping process, disoccluded regions are readily observed. Because
disoccluded regions are by definition regions in the target frame that are not
visible from the respective reference frame, this information is highly valuable
to guide the bidirectional prediction process of the target frames; in traditional
video codecs, disocclusion information has to be explicitly communicated as

1Throughout the thesis, we use the term “physical” motion to refer to the apparent
physical motion of rigid objects, i.e., the projection of 3D moving objects onto the 2D camera
sensor plane.
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side-information. While the main goal of this thesis is to improve the temporal
scalability of video coders, because of its intrinsic connection with TFI, we also
make contributions to the field of TFI. Throughout the thesis, we use TFI as
a convenient way of assessing the impact of suggested improvements, without
the need to build a full compression system.

We investigate three reference-based motion anchoring strategies, with pro-
gressively simpler motion anchorings. In the bidirectional hierarchical anchor-
ing (BIHA) framework, the anchoring of all motion fields is flipped with re-
spect to the popular hierarchical B-frame structure employed in existing video
codecs. We propose an analytical model in order to determine weights for
the spatio-temporal subbands of texture, motion, and breakpoint information
in the BIHA scheme. The temporal hierarchy enables the prediction of finer
level motion information from coarser levels in the hierarchy, which reduces the
coding cost of motion fields compared to the traditional anchoring of motion
at target frames. In the second motion anchoring strategy, all coded motion
information is anchored so that it points forward in time; we refer to this an-
choring as forward-only hierarchical anchoring (FOHA). The FOHA scheme
is not only conceptually simpler, but has an important positive impact on the
quality of the interpolated frames.

The favourable properties of the BIHA and FOHA schemes, which both
employ a hierarchical motion anchoring, led us start the exploration of a third
motion anchoring strategy, motivated primarily by the obstacles encountered
to efficiently compose motion fields across the temporal hierarchy. To this end,
we propose the base-anchored motion (BAM) scheme, where all coded motion
information is anchored at the first frame of a group of pictures (GOP). This
anchoring has a number of additional benefits with respect to the other two
motion anchoring schemes proposed in this thesis. In particular, it facilitates
the incorporation of higher-order motion descriptions, which improve the pre-
diction performance for objects that are following non-constant velocity tra-
jectory, which is essential for good compression performance as it reduces the
prediction residual that needs to be coded. Furthermore, while not explored
in this thesis, the fact that all motion is centrally organized can be expected
to greatly facilitate ROI access – a feature that becomes more important as
the spatial and temporal resolution of video content continues to increase.

The rest of this thesis is organized as follows: In Chapters 2 and 3, we
present important concepts and literature that is relevant for the rest of this
thesis. Chapters 4 to 7 present the contributions of this thesis; in Chapter
4, we introduce some of the main ideas and concepts that will be used in
Chapters 5 to 7, where three different motion anchoring strategies for scalable
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video compression are investigated. In the last chapter, we conclude the thesis
and discuss interesting venues for future research. Most of the work in the
main chapters has been published or submitted; the relevant publications are
included in the following detailed thesis structure.

Chapter 2: This chapter forms the first of two background chapters. We
present relevant concepts for image and video compression, with a focus on
scalable video compression.

Chapter 3: The three motion anchoring strategies we investigate in this the-
sis are all reference-frame anchored. In order to serve as prediction references,
the motion fields need to be warped from reference to target frames. As such,
the fundamental building block of all three motion anchoring strategies pro-
posed in this thesis performs TFI. In the first part of this chapter, we give an
overview of common true motion estimation schemes, as well as optical flow
schemes. In the second part, we review existing TFI schemes.

Chapter 4: This chapter presents the fundamental motion field operations
that are used to map motion from reference to target frames in all three mo-
tion anchoring strategies. Common to all three schemes is that they employ
piecewise-smooth motion fields with sharp discontinuities at moving object
boundaries. We present two motion field operations, namely motion inversion
and motion inference, which are used to form motion information at the target
frame in order to enable a bidirectional, occlusion-aware interpolation of the
target frame. Key in resolving double mappings and assigning “physical” mo-
tion in disoccluding regions (i.e., holes in the target frame) is the insight that
motion discontinuities displace with the foreground object. The two motion
field operations are evaluated in a TFI scenario, where the proposed bidi-
rectional, occlusion-aware TFI (BOA-TFI) method compares favourably with
state-of-the-art TFI methods. Parts of this chapter have been published in:

• [18] D. Rüfenacht, R. Mathew, and D. Taubman. “Hierarchical Anchor-
ing of Motion Fields for Fully Scalable Video Coding”. IEEE Interna-
tional Conference on Image Processing (ICIP), 2014.

• [19] D. Rüfenacht, R. Mathew, and D. Taubman. “Bidirectional,
Occlusion-Aware Temporal Frame Interpolation in a Highly Scalable
Video Setting”. Picture Coding Symposium (PCS), 2015.

• [20] D. Rüfenacht, R. Mathew, and D. Taubman. “Occlusion-Aware
Temporal Frame Interpolation in a Highly Scalable Video Coding Set-
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ting”. APSIPA Transactions on Signal and Information Processing (AT-
SIP), vol. 5, 2016.

Chapter 5: In this chapter, we propose a BIHA of motion for highly scalable
video compression, where the motion field anchoring is flipped compared to
the traditional motion anchoring at target frames that is employed in state-
of-the-art video codecs. At each level of the temporal hierarchy, the scheme
uses BOA-TFI to create predictions of the target frames. We derive an an-
alytical model which gives insight into how the importance of texture and
motion data changes across temporal scales of the proposed spatio-temporal
transform. We use a highly scalable motion discontinuity representation using
“breakpoints”, presented in [15]. In this chapter, we augment the breakpoint
induction policies to the temporal domain, and propose a hierarchical spatio-
temporal breakpoint induction (HST-BPI), which makes it possible to further
reduce the coding cost of breakpoints. We compare BIHA with a scalable
video coder that employs a traditional anchoring, as well as with SHVC, the
latest scalable video compression standard. The relevant publications coming
out of this chapter are:

• [21] D. Rüfenacht, R. Mathew, and D. Taubman. “Bidirectional Hier-
archical Anchoring of Motion Fields for Scalable Video Coding”. IEEE
International Workshop on Multimedia Signal Processing (MMSP), 2014.
Top 10% Award.

• [22] D. Rüfenacht, R. Mathew, and D. Taubman. “Motion Blur Mod-
elling for Hierarchically Anchored Motion with Discontinuities”. IEEE
International Workshop on Multimedia Signal Processing (MMSP), 2015.

• [23] D. Rüfenacht, R. Mathew, and D. Taubman. “A Novel Motion Field
Anchoring Paradigm for Highly Scalable Wavelet-based Video Coding”.
IEEE Transactions on Image Processing, vol. 25, no. 1, pp. 39–52,
2016.

Chapter 6: This chapter focuses on further improving the TFI performance,
which directly impacts the compression performance. We propose various
changes to the BIHA scheme in order to address shortcomings that were iden-
tified in the two previous chapters. First, we propose a more robust motion
discontinuity measure that is based on motion field divergence. Further, we
change the direction of the motion inference operation to a forward motion in-
ference; we call the resulting scheme forward-only anchored motion TFI (FOA-
TFI). As is turns out, this change leads to less ghosting in the interpolated

6



frames. Finally, we propose two texture optimization procedures that further
improve the visual (and objective) quality of the interpolated frames. The
scheme is extensively evaluated in a TFI scenario. At the end of the chapter,
we outline a hierarchical motion anchoring strategy for WSVC that uses FOA-
TFI as building block, which we call FOHA. The main parts of this chapter
have been submitted to:

• [24] D. Rüfenacht, R. Mathew, and D. Taubman. “Motion-divergence-
guided Temporal Frame Interpolation with Occlusion Handling”. Sub-
mitted to IEEE Transactions on Circuits and Systems for Video Tech-
nology, 2016.

Chapter 7: Both the BIHA and the FOHA scheme presented in Chapters 5
and 6, respectively, are reference-anchored hierarchical schemes. In this chap-
ter, we propose to further simplify the motion anchoring to a base-anchored
motion (BAM), where all coded motion information is anchored and orga-
nized at the first frame of a GOP. We present a mesh sparsification algorithm,
which makes it possible to reduce the number of motion vectors that have to be
coded, with almost no impact on the texture prediction quality. Furthermore,
the base-anchoring facilitates the incorporation of acceleration (and higher or-
der motion models), which improves the prediction quality in scenes that do
not follow the constant velocity assumption, which is essential for improving
the compression performance. We incorporate the BAM scheme into HEVC,
where preliminary coding results prove illuminating. The ideas of this chapter
have been published in:

• [25] D. Rüfenacht and D. Taubman. “Temporally Consistent High
Frame-Rate Upsampling with Motion Sparsifcation”. IEEE Interna-
tional Workshop on Multimedia Signal Processing (MMSP), 2016.

• [26] D. Rüfenacht, R. Mathew, and D. Taubman. “Higher-Order Motion
Models for Temporal Frame Interpolation with Applications to Video
Coding”. Picture Coding Symposium (PCS), 2016.

Chapter 8: This chapter summarizes the main results of this thesis. Fur-
thermore, we discuss a number of promising venues for highly scalable video
compression that are opened up by the ideas presented in this thesis.
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2 Scalable Image and Video
Compression

This chapter introduces the fundamental concepts employed in (scalable) im-
age and video compression schemes, which are required to understand and
appreciate the contributions of this thesis. The main difference between im-
age and video compression is that the latter can exploit both spatial and
temporal redundancies in the data, which results in higher compression ratios
than in image compression systems.

After a brief generic presentation of the main building blocks of a lossy
feedforward compression system, we use JPEG2000 to give a concrete exam-
ple of a state-of-the-art image compression system in Sect. 2.1. The reason we
chose JPEG2000 is that it allows us to simultaneously present the fundamen-
tal concepts of a compression system, and to introduce additional features,
e.g., scalability and accessibility. As mentioned in the introduction, this thesis
investigates new motion anchoring strategies with the aim of bringing the scal-
ability and accessibility features of JPEG2000 to video compression systems,
in order to facilitate interactive browsing of video.

In Sect. 2.2, we introduce the hybrid compression scheme, which is used
by all existing standardised video codecs; a particular focus will be on the
motion-compensated prediction feedback loop. As we will see in Sect. 2.3, this
feedback loop imposes restrictions on the scalability attributes of hybrid coding
schemes. We then shift the focus to wavelet-based scalable video compression
schemes, which have an open-loop structure that makes them better suited
for highly scalable video compression. In this thesis, we focus on physical
motion rather than block motion, which is characterized as being piecewise-
smooth with discontinuities around moving objects. At the end of this chapter,
we present a relatively recent way of compressing such motion fields using a
motion discontinuity representation that is highly scalable both in resolution
and precision.

We now briefly summarize the main functions of the three main building
blocks (see Fig. 2.1) of lossy feedforward image and video compression systems.
The goal of any lossy compression system is to minimize the number of bits
required to achieve a certain level of distortion; alternatively, a lossy scheme
aims at minimizing the distortion for a given bit-rate budget.
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(a) Feedforward Encoder (b) Feedforward Decoder

Figure 2.1: Main blocks of a “lossy” feedforward compression system. T is the transfor-
mation, Q the quantization, and C is the coding stage. The “lossiness” is introduced by
the quantizer Q.

Transformation The aim of the transformation stage is to convert the in-
put data into a new representation that is better suited for the subsequent
quantization and coding stages. For image and video compression applica-
tions, the input signal is typically partitioned into a collection of frequency
bands; each such frequency band has different statistical properties, and the
subsequent quantization and coding stages can be tailored accordingly. Fur-
thermore, properties of the human visual system (HVS), such as the fact that
the HVS is more sensitive to changes in the low-frequency bands, can be ex-
ploited.

Quantization The aim of the quantization stage is to introduce controlled
loss in order to achieve compression. In the interest of conciseness, we only
present the main concepts of this stage, and refer the interested reader to the
comprehensive overview by Gray and Neuhoff [27].

The quantizer Q(·) divides the region of support into N disjoint intervals
Ij , and maps coefficients to symbols sj , according to the interval they fall into:

Q(c) = sj if c ∈ Ij . (2.1)

The reconstruction of an approximate value ĉj from the corresponding symbol
sj is referred to as “dequantization”:

Q−1(sj) = ĉj . (2.2)

Quantization is the only significant source of distortion in an image and video
compression scheme. A minimum mean-squared error dequantization strategy
is to use the centroid of the relevant quantization interval as the representation
for the corresponding quantization index. Increasing the number of intervals
or quantization bins leads to a more accurate reconstruction of the original
input, at the expense of a higher coding cost.
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Coding The primary aim of the coding stage is to represent the sequence of
symbols obtained in the quantization stage with the least number of bits, by
exploiting the statistical redundancy between different symbols. For typical
image and video content, not all symbols are equally probable. By assigning
shorter codewords to symbols that are more probable, a shorter overall bit-
stream can be achieved; this is referred to as “entropy coding”. In the litera-
ture, such schemes are known as “variable-length coding” schemes. Huffman
coding [28] and arithmetic coding [29] are popular examples of variable-length
coding schemes. In Huffman coding, the length of a codeword is proportional
to the amount of information of the respective symbol. In arithmetic cod-
ing, variable-length codes are assigned to variable-length blocks of symbols; in
theory, an arithmetic coder can achieve an average bit-rate that is arbitrarily
close to the entropy of the source. In addition, and perhaps more importantly,
incremental encoding and decoding can be realized, which enables the realiza-
tion of long, efficient codes without requiring a large amount of memory to
maintain a large collection of codewords.

At the decoder, all the operations are inverted and applied in reverse order
(see Fig. 2.1b). While these three fundamental stages have been introduced
as separate building blocks, it is important to note that they go hand in hand.
In the next section, we show how these main building blocks are carefully
designed to work together, on the specific example of JPEG2000.

2.1 JPEG2000: Scalability, Accessibility, and Intrinsic
Upsampling

In this section, we present the main methods and techniques employed by
JPEG2000 [9] that enable its high scalability, accessibility, and “intrinsic up-
sampling”1 features. The latter can be seen as part of a highly scalable com-
pression system. However, as we will see in Sect. 2.3, intrinsic upsampling is
not easily possible in the temporal domain. In fact, a separate field of research
dedicated to increasing the framerate of video at the decoder exists, which is
usually referred to as TFI, or framerate upsampling. The relevant research of
this separate field of research will be reviewed in the next chapter. As we will
show in this thesis, the intrinsic temporal upsampling property of the proposed
highly scalable compression schemes achieves highly competitive TFI results.

1“Intrinsic upsampling” is a term we use to emphasize that in JPEG2000, the decoder can
decide to decode the image at a higher resolution than what was available at the encoder;
this is a direct consequence of the subband transform that is employed, and not normally
mentioned as a separate feature. Admittedly, in the spatial domain, similar results can be
achieved using other well-known techniques, such as bilinear, bi-cubic, or sinc-interpolation.
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In image compression, scalability refers to an encoding of the image in an
embedded way, such that lower resolutions are embedded in higher resolutions,
and lower qualities are embedded in higher qualities; importantly, there are
multiple dimensions of embedding. A scalable encoding of an image can be
decoded at various qualities and resolutions.

Accessibility refers to the ease with which a user can select an ROI in
the image that will be decoded at higher quality than the rest of the image.
Accessibility requires that the codestream is organized in a way that limits the
amount of data that need to be decoded that are not part of the ROI. This is
particularly appealing for interactive browsing of media, as mentioned in the
introduction.

We now present the main building blocks of JPEG2000 that enable state-
of-the-art compression performance with a number of attractive features that
go beyond compression.

2.1.1 Subband Transform for Resolution Scalability

In contrast to block-transforms such as the well-known discrete cosine trans-
form (DCT) [30], subband transforms have overlapping regions of support for
the analysis and synthesis operators, and hence they do not suffer from block-
ing artefacts, and are able to better exploit statistical redundancies in the
input data.

The transformation from the input signal to the different subbands is called
analysis, and the reverse transformation, which takes the individual subbands
and reconstructs the signal x̃[m], is referred to as synthesis. The analysis stage
consists of applying a set of bandpass filters to the input signal, each extracting
a different frequency band. Since these analysis filters are not ideal bandpass
filters, aliasing is introduced into the subbands. Careful design of the corre-
sponding synthesis filters makes it possible to cancel out the aliased parts, such
that the reconstructed signal x̃[m] will be identical to the input signal x[m];
classical results for the design of aliasing-free, linear-phase analysis/synthesis
filters are described in [31, 32].

For image and video compression, cascaded dyadic filter banks are most
widely used. In this case, the input signal x[m] is filtered by low-pass and
high-pass filters h0 and h1, respectively, and then subsampled by a factor of 2.
The output of the analysis stage are two subbands y0 and y1, which contain
the low and high frequency parts of the image, respectively. The synthesis part
consists of reversing the analysis part. That is, the signal is first upsampled by
inserting a zero between every pair of samples yj [m], for j ∈ {0, 1}, followed
by filtering the upsampled signal with gj .
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Figure 2.2: 2-level dyadic tree filter bank in one dimension.
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Figure 2.3: Example of a 2D subband decomposition. For visualization, all but the LL2
subband have been normalized and offset, so that gray signifies a value of zero. One can
see how the main energy is contained in the LL2 subband.

Since most information of natural images is contained in the low-frequency
subband, so-called tree-structured subband transforms have been adopted,
where at each decomposition level, only the low-frequency subband is fur-
ther decomposed; Fig. 2.2 depicts the 1D-case of such a dyadic tree-structured
filter bank [31].

The 2D discrete wavelet transform (DWT) filters are obtained through
separable extension; that is, the 2D filtered output y[m] = y[m,n] is obtained
by successively applying the 1D-DWT along the rows and columns of the
input image x[m] = x[m,n]. The spatial subbands can then be obtained by
de-interleaving y[m]:

yi,j [m,n] = y[2m+ i, 2n+ j], for i, j ∈ {0, 1}. (2.3)

In order to emphasize the orientation of the subbands, they are commonly
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Figure 2.4: Lifting implementation with two lifting steps.

labelled as follows: y0,0 as LL, y0,1 as HL, y1,0 as LH, and y1,1 as HH, where
the first and second letter stand for the type (e.g., low-pass L or high-pass
H) of the applied horizontal and vertical filter, respectively. For example, HL
is the signal obtained by applying a horizontal high-pass filter, and a vertical
low-pass filter; hence, the HL band represents the vertical edges. In a tree-
structure, the subbands are subscripted with the corresponding level in the
hierarchy. Fig. 2.3 shows an example of a dyadic 2D-subband decomposition
with two decomposition levels.

The LL2 subband is a spatially subsampled version of the original image.
The other subbands contain high-frequency content needed to reconstruct the
image at a higher spatial resolution. For example, all information needed to
reconstruct LL1 is contained in LL2, together with HL2, LH2, and HH2. This
inherent resolution-scalability makes subband transforms particularly appeal-
ing for scalable compression schemes.

Lifting The lifting structure proposed by Sweldens [33, 34] is an alternative
way of constructing a multiresolution representation of a signal, which turns
out to be particularly useful for this thesis. All symmetric finite impulse
response (FIR) filters can be implemented by successfully updating the even
and odd subsequences of a signal by a sequence of lifting steps. As we shall
see in Sect. 2.3.3.3, filters that can be implemented with two lifting steps are
of particular interest; in this case, the two lifting steps are usually referred
to as predict and update steps. Fig. 2.4 shows an example of such a lifting
structure.

The signal x[m] is split up into its odd and even polyphase components,
x[2k] and x[2k+1]. Odd samples are predicted from the adjacent even samples
in the neighbourhood N , which produces the residue:

h[m] = x[2k + 1]− P{(x[2k])k∈N } (2.4)
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Because x[2k] potentially contains a lot of aliased components, it should be
updated to a filtered version l[k], which is done in the update step:

l[k] = x[2k] + U{(h[k])k∈N } (2.5)

The signal x can be perfectly reconstructed by undoing the update and predict
steps as follows:

x[2k] = l[k]− U{(h[k])k∈N }

x[2k + 1] = h[k] + P{(x[2k])k∈N }
(2.6)

Of particular interest for this thesis is the 5/3 biorthogonal filter [35], which
can be implemented using the following two lifting steps:

λ1(z) = −1
2(1 + z)

λ2(z) = 1
4(1 + z−1),

(2.7)

and the gain factors K0 = 1 and K1 = 1
2 . With this filter, the predict and

update step become:

h[k] = x[2k + 1]− 1
2 (x[2k] + x[2k + 2])

l[k] = x[2k] + 1
4 (x[2k − 1] + x[2k + 1]) .

(2.8)

One can see how each odd pixel is predicted from the neighbouring even pixels.
The predicted value is then subtracted from the odd pixel, which will only
contain the part that could not be predicted (i.e., the high-frequency part).
After all odd pixels have been predicted, some of the prediction error of the
predicted odd pixels is fed back to the even pixels during the update step. The
importance of this update step is that during synthesis, it distributes the high-
pass quantization error across space (or time), while shaping its spectrum, so
that the overall distortion is reduced.

While this section focused on image transforms, we will see in Sect. 2.3.2
how subband transforms can be applied in the temporal domain, where in-
herent multiresolution representation naturally lends itself to highly scalable
video compression schemes.

2.1.2 Deadzone Scalar Quantization

As mentioned earlier in this section, the aim of the quantization stage is to
convert continuously valued transform coefficients cj to a finite set of symbols
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{sj}. JPEG2000 employs a deadzone scalar quantizer, which can be seen as
a scalar quantizer where the center quantization interval is wider than the
others; the width of the center interval I0 is set by ε. Denoting ∆ as the
quantization step size, the deadzone quantizer assigns symbols according to
the following equation:

sj =


sgn(cj) ·

⌊ |cj |
∆ + ε

⌋ |cj |
∆ + ε > 0

0 otherwise

, (2.9)

where b·c is the floor function (round down to the nearest integer). In
JPEG2000, the width of I0 is set as 2∆, which is obtained by setting ε = 0.

The dequantizer which maps symbols sj back to (approximated) coefficient
values ĉj , is

ĉj =

 sgn(sj) · (|sj | − ε+ 0.5) ·∆ sj 6= 0

0 otherwise
. (2.10)

2.1.3 Embedded Coding for Distortion Scalability

An embedded coder creates a bit-stream that has many identifiable parts,
which makes it possible that the video can be decoded at a number of spatial
resolutions, frame-rates, and qualities. The aim is that the rate-distortion (R-
D) performance of each decoded sub-stream is comparable to a correspond-
ing single layer coding at the same spatio-temporal resolution and quality.
Examples of achieving embedded image compression include the well-known
embedded zero-tree wavelet (EZW) [36] and set partitioning in hierarchical
trees (SPIHT) [37], as well as embedded block coding with optimized truncation
(EBCOT) [38], which is employed in JPEG2000.

2.1.3.1 Embedded Block Coding with Optimized Truncation (EBCOT)

In EBCOT, the subbands obtained after wavelet analysis are partitioned into
smaller blocks called “code-blocks”, typically of size 64 × 64 or 32 × 32 [9].
The samples of each such code-block are independently coded using a bit plane
coding process, which is referred to as “tier-1” coding.

Starting with the most significant bit plane, EBCOT applies three coding
passes to each bit plane: 1) Significance propagation pass (SPP); 2) magnitude
refinement pass (MRP); and 3) cleanup pass (CP). With the exception of
the most significant bit plane, where only the cleanup pass is performed, the
significance pass is the first coding pass performed. We now provide more
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details about the three coding passes.
In the SPP, each bit plane is associated with a significance threshold,

which is a power of two. The initial threshold is determined by the maximum
magnitude of all the wavelet coefficients, and divided by two after the coding
of each bit plane. The significance of each sample that is predicted to be
significant from its neighbours is represented with one binary symbol. If the
sample is found to be significant, its sign is represented with one binary symbol.
The symbols are then encoded using context-adaptive arithmetic coding that
exploits statistical redundancies. Every sample that was found to be significant
in a previous bit plane is refined at each lower bit plane in the refinement pass,
represented using one binary “refinement” symbol, during the MRP. The CP is
conceptually similar to the significance pass, except that it deals with samples
that have not yet been found to be significant and that are predicted to be
insignificant for that coding pass.

Each coding pass at each bit plane creates a sequence of symbols, and
context modelling is employed to exploit higher-order statistical redundancies
that exist between bit planes. The main idea behind context-adaptive mod-
elling is that if a not yet significant sample is surrounded by samples that have
become significant in an earlier bit plane, it has an increased probability of
becoming significant.

Post-Compression Rate-Distortion Optimization The selection of trunca-
tion points can be deferred until the code-blocks have been independently
coded, when the rates and associated distortions will be known. The cod-
ing information generated in the tier-1 is grouped together into packets. A
subset of these packets is then selected in an R-D optimization algorithm to
minimize the distortion for a given bit-rate. They are grouped together into
so-called “quality layers”, which enable progressive refinement of the quality
of the video.

2.2 Hybrid Video Compression

In this section, we present the “hybrid” video compression scheme, which is
employed by all standardised state-of-the-art video codecs; Fig. 2.5 shows a
(simplified) block diagram of a hybrid codec. For conciseness, we will not
delve into all the intricate details that are employed in different standardised
codecs; for a comprehensive overview of the two latest standardised video
codecs, the interested reader is referred to [4] for H.264/AVC, and [5] for
HEVC, respectively. The purpose of this section is to present the fundamental
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Figure 2.5: Main building blocks of a hybrid codec, as used by all standardised video
codecs. Note the predictive feedback loop (orange rectangle). Only the prediction resid-
uals and side-information (e.g., motion vectors, prediction mode, ...) are transmitted,
which can result in big compression improvements.

structure of a hybrid video codec, which will be useful for the discussion about
scalable video coding in Sect. 2.3. The scheme is called a hybrid since it
combines transform coding in the spatial domain (orange rectangle in Fig. 2.5)
with a predictive feedback loop to perform motion-compensated prediction in
the temporal domain [39]. The difference between transform and predictive
coding schemes is that the former is feedforward, whereas predictive techniques
involve a feedback loop. As we shall see, this predictive feedback loop is one
of the main obstacles for efficient scalable video compression in standardised
video codecs. In Sect. 2.3.2, we present how open-loop video compression
systems (i.e., transform coding only) are much better suited for high scalability.

In hybrid coding systems, certain “key” frames are coded with spatial
information from the same frame only; these are referred to as INTRA coded
frames. Modern video codecs use directional spatial prediction, which by itself
is a kind of feedback loop, but one which does not operate in time. In the
next section, we show how the temporal predictive feedback loop is used in
hybrid compression schemes to exploit temporal redundancies; this so-called
INTER mode results in a significant improvement of the compression ratio.

2.2.1 Motion-Compensated Prediction

At the heart of any modern video coder is motion-compensated prediction
(MCP), where the temporal correlation between frames is exploited to predict
certain target frames from neighbouring reference frames; only the prediction
residual and side information (e.g., motion vectors) are encoded, which can
result in significant compression gains. A target frame can either be uni-
directionally predicted from a preceding (or succeeding) reference frame, or
bidirectionally predicted from both previous and succeeding reference frames.
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Hybrid coders implement MCP by adding a predictive feedback loop to the
feedforward scheme, as shown in Fig. 2.5.

Let us focus on the most simple case where the current frame is predicted
using only the preceding frame. The motion between the current frame fk (at
the discrete time instant k), and the preceding frame (fk−1), is estimated in
the motion estimation (ME) phase, resulting in a set of motion vectors (MV).
These are used to create a motion-compensated prediction (P) of the target
frame fk; let us denote the predicted frame as fpk . Next, the difference between
the motion-compensated prediction of the target frame and the actual frame
is computed:

rk = fk − fpk , (2.11)

which is commonly referred to as prediction residual. The residuals are then
transformed and quantized, and used to predict the next frame. On the de-
coder side, the coding, quantization, and the transformation are inverted,
which results in r̃k. Then, for every INTER-coded frame, the necessary
motion-compensated predictions fpk are formed, which are added to the resid-
ual r̃k, to obtain the reconstructed frame f̃k,

f̃k = r̃k + fpk . (2.12)

It is important to note that the motion information used at the decoder has
to be exactly the same as the one used at the encoder. Otherwise, even slight
differences can lead to a phenomenon called “drift”, which essentially means
that the decoder is no longer synchronized with the encoder, and can cause
visually disturbing artefacts in the reconstructed video sequence. In order to
provide accessibility (fast-forward) as well as to limit the impact of the drift
problem, a video is partitioned into independently coded GOPs.

2.2.1.1 Group of Pictures (GOP)

In a video coder, frames are grouped together to group of pictures (GOP);
Fig. 2.6 shows two commonly used GOP structures,2 where the three most
common types of frames can be identified: I, P, and B.

I-frames are intra-coded frames, which means that they are not predicted
from any other frames; such frames are also referred to as “key frames”. Since
they are not dependent on any other frames, they are useful as they “reset” any

2Note that in most video compression literature, the arrows point to the frame that is to
be predicted. In order to be consistent with the rest of this thesis, the arrows are anchored
at the frame where the motion is described, which means that the arrow direction is reversed
to what is commonly found in the literature.
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(a) Example GOP structure (b) Hierarchical B-frame structure [40]

Figure 2.6: Examples of GOP structures. I-frames are intra-coded frames, which are
not predicted from other frames; P-frames are predicted from the previous frame, and
B-frames are bidirectionally predicted from previous and succeeding reference frames (I
or P). (a) shows a common structure which involves I, P, and B-frames; (b) shows a so-
called “hierarchical B-frame” structure, which is of interest in this thesis, since it enables
temporal scalability in hybrid compression schemes.

potential drift errors, and enable fast temporal access. P-frames are predicted
from a previous frame in the GOP, which can either be an I-frame, or another
(already decoded) P-frame. Lastly, B-frames are bidirectionally predicted from
previous and future (decoded) frames. They are the most efficient in terms
of reducing the prediction residual, especially in regions that are not visible
(e.g., occluded) in the previous reference frame. This is because there is a
good chance that regions that are occluded in a previous frame are visible
in the succeeding reference frame; by sending occlusion information as side-
information along with the bidirectional motion field, the residual around
moving objects can be significantly reduced. It is worth noting that parts of
a P or B-frame can be Intra-predicted, but not vice-versa; this will be further
discussed in Sect. 2.2.1.3.

Fig. 2.6b shows a hierarchical B-frame structure [40], where B-frames are
only predicted from lower-indexed B-frames or I-frames; in this structure, the
video can be decoded at different frame-rates by dropping higher-indexed B-
frames. We will go into more detail of this special form of temporal scalability
in Sect. 2.3, and turn our attention to the estimation of motion in hybrid video
coders.

2.2.1.2 Unconstrained Block Matching

From an implementation point of view, it seems a natural choice to “anchor”
the motion field at the frame that is to be predicted (e.g., the target frame). Al-
most every successful video coder employs block motion compensation (BMC)
[41], where the target frame fb is partitioned into N disjoint blocks, and for
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(a) Reference frame fa (b) Target Frame fb

Figure 2.7: Block Matching example. In the example, the target frame is partitioned
into blocks. For each such block, the best match (in terms of smallest prediction residual)
is found in the reference frame.

each such block Kl, the “motion” vector ul is found that best predicts the
block from the reference frame fa (see Fig. 2.7). That is,

ul = arg min
u

ED(fa,Kl,u), (2.13)

where ED is the block distortion measure (BDM). Using u to denote the dis-
placement vector at location m, and ρ(·, ·) as the matching criterion, which
in most video compression schemes is the mean squared error (MSE), e.g.,
ρ(i, j) = (i− j)2, the BDM can be written as:

ED(fa,Kl,u) =
∑

m∈Kl

ρ (fa[m + u], fb[m]) . (2.14)

It is worth noting that the motion is normally not integer-valued, and hence
sub-pixel search, achieved by upsampling the reference frame and searching
on the integer grid of the upsampled frame, is employed; quarter and even
eighth-pixel precision is commonly used [4, 42]. Fig. 2.8 shows the impact of
block size on prediction residual for a P-frame.

One can see how smaller block sizes lead to better predictions, but also
result in less smooth motion fields. In the extreme case of a block size of 1×1,
the best prediction in terms of smallest prediction residual can be achieved.
However, in a coding environment, the cost of coding the motion has to be
balanced with the cost of coding the prediction residual. An efficient video
coder therefore strikes to find the optimal balance between the cost of coding
the motion and the cost of coding the prediction residual, which is found using
an R-D optimization framework.
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(a) M̂
(32×32)
3→2 (390 blocks) (b) M̂

(8×8)
3→2 (6240 blocks)

(c) Crop of ∆f̂
(32×32)
3 (28.9dB) (d) Crop of ∆f̂

(8×8)
3 (32.1dB)

Figure 2.8: Impact of block size on motion-compensated prediction error. We show
two (colour-coded) block motion fields obtained using unconstrained block matching;
the colour-code is explained in Fig. A.1. Larger blocks result in a less noisy motion
field. However, the prediction performance is significantly reduced compared to smaller
prediction blocks.

2.2.1.3 Rate-Distortion Optimization in Hybrid Codecs

There is no explicit attempt in standardised video coders to estimate the
“true” motion of the scene. Instead, the motion is chosen in an R-D optimal
way. That is, the objective is to get the minimum distortion subject to an
upper bound on the overall bit-rate; or, equivalently, to get the minimum
bit-rate subject to an upper bound on overall distortion. Both objectives are
equivalent to minimizing

J = D + λR, (2.15)

where D is the overall distortion and R is the overall bit-rate, while λ > 0
determines the constraint (on distortion or bit-rate) for which the solution is
optimal.

The distortion of an approximation f̂ with respect to an original frame f
is usually measured in terms of MSE:

MSE ,
1

MN

M∑
m=1

N∑
n=1

(
f [m,n]− f̂ [m,n]

)2
, (2.16)

where M and N are the width and the height of the input frame. In image
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and video compression, the “quality” is most commonly measured in terms of
peak signal-to-noise-ratio (PSNR), which is based on the MSE, and defined as

PSNR , 20 log10

(
2B − 1√

MSE

)
, (2.17)

where B corresponds to the number of bits required to represent an image
sample. In order to evaluate the performance of a video compression scheme,
so-called “R-D curves” are created, where the PSNR is plotted over a range of
bit-rates. Bjøntegaard [43] proposed a simple model to quantitatively assess
the coding efficiency between two video compression algorithms. The main
idea is to fit a third-order logarithmic polynomial to a set of N ≥ 4 PSNR
measurements with corresponding bit-rate values; then, an approximation of
the average PSNR difference (BD-PSNR) is obtained by calculating the differ-
ence between the integrals of the fitted R-D curves, divided by the integration
interval. Similarly, the so-called “BD-Rate” can be computed, which expresses
the average bit-rate difference (in %) over the whole range of PSNRs.

In existing video codecs, the solution to (2.15) is found on a per-block
basis. That is, for each block Kl, the block prediction mode Il (see end of this
section for more details) is found by minimizing the following Lagrangian cost
function [44]:

J(Kl, Il) = Drec(fa,Kl, Il) + λRrec(Kl, Il). (2.18)

In practice, finding the minimum of (2.18) is infeasible, since it involves all
blocks of all frames of the video sequence to be compressed. A number of
simplifications aiming at reducing the computational complexity have been
proposed; a good overview can be found in [45]. A widely accepted strategy
is to first find the motion vectors for each block, using

ul = arg min
u∈U

E(fa,Kl,u) + λmvRmv(Kl,u), (2.19)

where U is the set of all possible partitions of the block Kl that are allowed
by the standard. For example, H.264/AVC [4] considers block sizes of 16×16,
8× 8, and 4× 4, as well as rectangular blocks of size 16× 8, 8× 16, 8× 4, and
4× 8.

We now have a closer look at three commonly used block prediction modes
Il ∈ {INTRA, INTER, SKIP}. INTRA and INTER have been introduced
in Sect. 2.2; in the SKIP mode, a block “inherits” the motion from its causal
neighbours to form a prediction, without texture residual coding. The distor-
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tion for the INTER mode of a block Kl is computed as follows:

Drec(Kl, INTER,ul) =
∑

m∈Kl

(fa[m + ul]− fb[m])2, (2.20)

and Rrec(Kl, INTER) is the sum of the rates for the motion vectors, transform
coefficients, and mode information.

Using uSKIPl to denote the motion inherited from the causal neighbours
of block Kl, the distortion for the SKIP mode can be found as follows:

Drec(Kl, SKIP,uSKIPl ) =
∑

m∈Kl

(fa
[
m + uSKIPl

]
− fb[m])2, (2.21)

and the rate Rrec(Kl, SKIP ) is (approximately) one bit; this means that in
the SKIP mode, there is no texture residual coding involved.

Lastly, the distortion for the INTRA mode is:

Drec(Kl, INTRA) =
∑

m∈Kl

(fb[m]− f̂b[m])2, (2.22)

and Rrec(Kl, INTRA) is the rate obtained after entropy coding of the texture
residual. From the above elaborations, one can see the opportunistic nature
of the motion information obtained in a hybrid video coder.

2.2.1.4 Problems with Block-Motion and Ways of addressing them

We now state the two main issues with block-based motion estimation, and
present some key approaches that have been developed to mitigate these prob-
lems:

1. Blocks are unable to represent motion in the vicinity of moving object
boundaries. This means that any block that straddles a motion boundary
will be unable to represent the underlying motion;

2. Block-motion schemes typically estimate translational motion, and are
hence unable to represent non-rigid motion, such as rotating objects and
zooming.

The first point can be mitigated by allowing varying block sizes, which
is commonly referred to as variable block size (VBS) prediction [46]. Each
such block is assigned a different motion vector. A quadtree structure can be
used to structure variably sized blocks. Mathew and Taubman [47] show how
the dependency between leaf-nodes of the quadtree can be exploited using a
concept called leaf-merging; a similar concept is used in HEVC [5]. The large
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(a) M̂3→2 from H.264/AVC (b) M̂3→2 from HEVC

Figure 2.9: Motion Fields (colour-coded) estimated using H.264/AVC and HEVC
INTER prediction, visualized using the colour-code explained in Fig. A.1. While both
motion fields are reasonably smooth within objects, H.264/AVC has much more erroneous
motion vectors around moving objects.

variety of block sizes improves the ability to represent motion in the vicin-
ity of moving object boundaries, and to a certain extent implicitly models
discontinuities in the motion field by having smaller block sizes in the vicin-
ity of motion boundaries. For many scenes, the object motion is smooth, in
which case the underlying motion field is piecewise-smooth. In HEVC, blocks
can inherit the motion of their spatial neighbours, which favours smoothness
within moving objects. Fig. 2.9 shows example motion fields estimated us-
ing H.264/AVC and HEVC using only INTER mode prediction. Note how
both motion fields are reasonably smooth within objects; however, the merge
mode of HEVC seems to be highly effective around object boundaries, where
H.264/AVC yields a lot more erroneous motion “prediction” vectors. Another
way of handling blocks that straddle motion boundaries is to segment them
into regions, and then use neighboring blocks to infer motion for each region
[48]. In order to avoid having to communicate the segmentation mask, [48]
makes the assumption that boundaries do not change between frames, and
predicts the segmentation mask from previously decoded frames.

The second main problem with blocks, namely their inability to represent
motion that is not translational, has been addressed in various ways. Higher
order motion models have been shown to be beneficial in scenes with back-
ground motion that is difficult to describe with blocks (e.g., rotation, zoom)
[49, 50]. Servais et al. [51] use a content-adaptive mesh to partition the tar-
get frame into a collection of disconnected triangles, such that no triangle
straddles an object boundary; this addresses the first problem of block motion
mentioned above. They estimate affine motion parameters for each triangle,
and hence can account for non-translational motion. While this approach is
able to reduce the prediction residual, it is unclear how the motion information
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Figure 2.10: Comparison between single layer coding and scalable video coding, in a
heterogeneous video streaming application. To serve the requirements of various devices,
a streaming server needs to host many copies of the same video at different qualities and
resolutions. In a highly scalable video codec, on the other hand, the video is encoded in
a way that lower resolutions and quality levels are embedded within higher qualities, such
that the various requirements can be met with just a single copy of the video.

could be efficiently coded.

2.3 Scalable Video Compression

The goal of scalable video coding is to encode the video in an embedded way
such that lower qualities (e.g., spatial, temporal, SNR, ...) are embedded
within higher qualities; this means that at the decoder, partial streams at
lower qualities can be decoded. Scalable video can be beneficial in a variety
of applications.

The classic scenario of scalable video is streaming video to a set of het-
erogeneous clients. Because of the rapidly growing demand for consuming
multimedia over networks with varying bandwidths, as well as the hetero-
geneity of end user devices (from smartphones to high definition displays),
acceptable decoding quality can only be met if the server can instantaneously
adapt the bit-rate. Fig. 2.10 shows how scalable video coding can be useful if
video content is streamed over heterogeneous networks.

Another scenario, which is less considered and mostly ignored in standard-
ised video codecs, is the one of interactive browsing and navigation of video
content, where the quality of the video progressively improves as parts of a
video are revisited. Such progressive refinement is not possible if a streaming
server contains multiple (unrelated) single-layer coded copies.
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Figure 2.11: Panoramic video as an example of interactive browsing and navigation of
video. The original video on the left is recorded at very high resolution, possibly recorded
by a number of cameras. On a low-resolution version of the original video, the user can
then select which part of the scene he or she wants to watch, which will subsequently be
streamed at higher resolution.

Closely related to scalability is the concept of accessibility, whereby the
user can select an ROI in the video that will be decoded at a higher qual-
ity than the rest of the video. Accessibility requires that the codestream is
organized in such a way that the amount of data that needs to be decoded
outside of the ROI is minimized. A specific application where ROI coding
becomes particularly appealing is the one of “panoramic” video, as shown in
Fig. 2.11. An event is recorded at very high resolution, possibly obtained by
stitching together a number of synchronized videos. The user can then choose
an ROI, which will subsequently be streamed at higher resolution and qual-
ity. Panoramic video could also be very useful in video surveillance, where
currently a number of screens are required to survey large areas.

Scalability can be best realized if the encoder works independently of the
decoder. Otherwise, if the decoder decides to truncate the codestream in an
unexpected manner, its state becomes desynchronized from the encoder. This
leads to a phenomenon called “drift”, which results in visually disturbing arte-
facts. As we have seen in Sect. 2.2.1, hybrid compression schemes have a pre-
dictive feedback loop, where the encoder replicates the state of the decoder,
which makes such schemes inherently ill-suited for scalability. Nonetheless,
the latest standardised video codecs (H.264 and HEVC) have scalable exten-
sions, H.264/SVC [6] and SHVC [7], respectively. Sect. 2.3.1 gives a high-level
overview of how (limited) scalability can be achieved in a hybrid coding sce-
nario.

In Sect. 2.3.2, we turn our attention to wavelet-based scalable video coding
(WSVC) schemes, which use a feedforward structure (see Fig. 2.1). As we
will see, the multiresolution properties of the employed subband transforms
“naturally” lend themselves to highly scalable video compression schemes.
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2.3.1 Scalability in Hybrid Coding Schemes

Both of the latest standardised video codecs have scalable extensions, which
are called H.264/SVC and SHVC. On top of spatial, temporal, and SNR scal-
ability offered by H.264/SVC, SHVC also supports bit depth (e.g., 8 bit to
10 bit) and colour gamut scalability (e.g., BT.709 to BT.2020)3; since in this
thesis, we focus on spatial and temporal scalability, we will not go into more
details about these. As shown in [52], the gains of SHVC compared with its
predecessor H.264/SVC are comparable with the gains of their non-scalable
counterparts.

In the following, we present how scalability is achieved in hybrid coding
schemes, and discuss the fundamental limitations that are imposed by their
closed-loop nature. Temporal scalability is normally enabled by using a hierar-
chical B-frame structure, where the motion-compensated temporal prediction
is limited to reference pictures at coarser temporal levels; an example GOP
structure is shown in Fig. 2.6b. The general principle to achieve spatial and
SNR (i.e., quality) scalability is to code video in multiple layers: a base layer
(BL), which contains the lowest quality representation, plus one or more en-
hancement layers (EL), which provide improved quality of the video. Fig. 2.12
shows a general structure, where the video is encoded such that two different
spatial resolutions can be decoded.

The base layer can be seen as an approximation of the higher layer spa-
tial resolutions, and can be used as prediction source in the decoding of the
enhancement layers. In order to avoid the drift problem, only information
from lower-numbered layers can be used to predict any given layer. While the
base layer will perform identically to a single-layer coder at the same rate,
the same is not true for the enhancement layers. In fact, because (lower-
resolution) base-layer information is used to predict the enhancement layer,
the R-D performance will be worse than the one of a single-layer coder.

One could then be tempted to include the information from all enhance-
ment layers in the prediction of the other layers. In this case, the performance
can be expected to approach the performance of a single-layer coder if all en-
hancement layers are consumed. However, the performance of the base layer
and all intermediate layers would significantly suffer, since different estimates
would be used at the encoder and the decoder, which causes the drift effect.

The discussion above highlights the fact that the feedback-loop structure of
hybrid codecs is ill-suited for scalability; either the base-layer or the enhance-
ment layer performance has to be penalized. For this reason, the number of

3BT.709 is the standard used in high definition TV (HDTV), and BT.2020 is used in
ultra high definition TV (UHDTV).
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Figure 2.12: Achieving (limited) scalability in hybrid coding schemes using enhancement
layers. The video is encoded in multiple layers: a base layer (Level 0), and one or more
enhancement layers (Layer 1), which improve the quality of the video. In the example,
the base layer is encoded at two different spatial resolutions; the lower resolution serves
as prediction reference for the higher resolution.

layers is usually limited to very few. Furthermore, the quality levels have to be
decided upon beforehand, and it quickly gets complicated if scalability along
various dimensions (spatial, and rate) needs to be achieved.

In the next section, we turn our attention to wavelet-based scalable video
compression, which is much better suited for “highly” scalable video coding
since it uses a feedforward structure that is devoid of any feedback loops.

2.3.2 Wavelet-based Highly Scalable Video Compression

Before we delve into the details of wavelet-based video compression, we find
it useful to point out what we mean by a “highly” scalable video compression
scheme. As mentioned in Sect. 2.1, a scalable bit-stream is one that may
be partially discarded to obtain lower quality/resolution representation of the
original video. As we have seen in the previous section, the scalability of
hybrid video coders is limited to a few enhancement layers. In contrast, a
highly scalable bit-stream is one that may be decoded in many ways to obtain a
large number of different spatio-temporal resolutions and qualities, as shown in
Fig. 2.13. Importantly, scalability should be a multi-dimensional phenomenon,
not a linear sequence of causally dependent layers. It becomes very difficult
to scale spatial resolution and quality (quantization precision) independently
when there are prediction feedback loops involved, as is the case in H.264/SVC
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Chapter 2. Scalable Image and Video Compression

Figure 2.13: Spatio-temporal embedding of video for highly scalable video compression.
The input video is encoded in an embedded way, such that the video can be decoded at
various frame-rates and/or spatial resolutions.

and SHVC.
For this, a feedforward compression scheme (i.e., without prediction feed-

back loop) is much better suited. The interesting multiresolution and energy
compaction properties of 2D subband structures on images (see Sect. 2.1.1)
have motivated research in extending them to spatio-temporal volumes, i.e.
to video sequences. Karlsson and Vetterli [53] were the first to apply a 3D-
DWT to videos. Because they do not use motion compensation between the
frames, the temporal wavelet is only effective in regions that are not in mo-
tion. Furthermore, this method suffers from so-called “ghosting artefacts” in
the low-pass temporal subbands.

The energy in the high-frequency subbands along the temporal domain
can be significantly reduced if the frames are temporally aligned. Taubman
and Zakhor [54] apply an invertible warping to frames in order to align spatial
features before applying a separable 3D-DWT. The proposed method is best
suited for global motion, such as a panning camera, since invertible warp-
ings cannot represent local motion of objects. Ohm [55] uses a block displace-
ment scheme, where each frame is partitioned into a disjoint set of rectangular
blocks, each of which can undergo translation following whole pixel motion.
The 3D-DWT is then applied along the motion trajectory of the blocks. For
example, the temporal lowpass subband is obtained by applying a lowpass
filter along the motion trajectory of the block, followed by subsampling. The
problem with this scheme is that motion trajectories of blocks might overlap
(e.g., because of occlusion and contraction/expansion of objects). This means
that some pixels are used multiple times in the temporal filtering, whereas
others are not used at all. These “disconnected” pixels need to be treated sep-
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arately in order for the whole transform to remain invertible, which negatively
affects compression performance. By modifying the placement of covered and
uncovered pixels depending on the motion compensation direction, Choi and
Woods [56] avoid the predictive coding of covered pixels. The main problem
with their approach is that for perfect reconstruction, the motion vectors have
to be integer-valued. Hsiang and Woods [57] achieve half-pixel accuracy, which
results in improved R-D performance compared to Choi and Woods [56].

2.3.2.1 Lifting-Based Motion Compensation

The lifting structure proposed by Sweldens [33] (see Sect. 2.1.1) was adapted
to the temporal domain by several independent research groups [58–60], which
led to motion compensated temporal lifting; this structure enables the con-
struction of invertible, motion adaptive temporal transforms from arbitrary
motion fields. In the literature, this structure is most often referred to as
motion-compensated temporal filtering (MCTF) [61]. Because the DWT is
not shift-invariant, the order of application of the spatial and the temporal
DWT changes the final subbands. In the following, we summarize the differ-
ent WSVC architectures that have been proposed in the literature.

Spatial Domain Motion Compensated Temporal Filtering “t+2D” The
first, probably most natural architecture, is the “t+2D” approach, where the
wavelet transform is first applied in the temporal domain, followed by a 2D
spatial subband transform to the motion-compensated frames [58–60]. Let
Wi→j(fi) denote the motion-compensated mapping of frame fi to frame fj .
Then, using lj and hj to denote the low- and highpass temporal subband of
the original video frames fj , the motion-compensated lifting steps for the 5/3
biorthogonal wavelet analysis are:

hk = f2k+1 −
1
2
(
W2k→2k+1(f2k) +W2k+2→2k+1(f2k+2)

)
lk = f2k + 1

4
(
W2k−1→2k(hk−1) +W2k+1→2k(hk+1)

)
.

(2.23)

For clarity, Fig. 2.14 visualizes the temporal lifting steps of a 5/3 biorthog-
onal wavelet. The temporal wavelet transform is applied along the motion tra-
jectories, given that the motion is correctly modelled, which significantly re-
duces the prediction residuals. Secker and Taubman [62] present a lifting-based
invertible motion adaptive transform (LIMAT), which employs a deformable
mesh model for the motion that is able to model expansion and contraction of
moving objects. One of the largest benefits of this scheme is that the temporal
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Figure 2.14: Temporal lifting steps of a 5/3 discrete wavelet transform with motion
compensation. W denotes the warping operator that maps texture from one frame to
another.

transform remains invertible, even for uninvertible motion warpings. LIMAT
can benefit from bidirectional prediction provided by the 5/3 biorthogonal
wavelet, whereas for the block-displacement scheme with whole pixel motion
proposed in [55], the unidirectional prediction provided by the Haar wavelet
performs as well. Golwelkar and Woods [63] confirm the benefits of the 5/3
wavelet. Since they work with block-based motion which has poor scalability
attributes, their experimental results show that for low bit-rates, the Haar fil-
ter potentially has better R-D performance; this is due to the fact that at lower
bit-rates, the block size is increased and hence larger regions of disconnected
pixels are produced.

While the “t+2D” architecture has the best compression efficiency and
temporal scalability, problems arise with spatial scalability. The fact that
higher frequency spatial subbands are discarded at lower spatial resolutions
leads to spatial aliasing. Furthermore, the motion-compensated temporal syn-
thesis has only access to a reduced resolution version of the motion field.
Rusert and Ohm [64] propose an overcomplete MCTF, which is similar to the
“t+2D” approach, but MCTF is performed at each spatial level independently.
This way, the reconstruction quality at lower spatial levels can be optimized
without significantly affecting the quality at higher spatial levels.

In-band Motion Compensation “2D+t” To address the spatial scalability
problems of “t+2D” structures, Andreopoulus et al. [65] propose “in-band mo-
tion compensation”. This is achieved by first applying the DWT in the spatial
domain, followed by temporal filtering; because of the order the spatial and
temporal DWT are applied, this structure is often referred to as “2D+t”. With
this structure, separate motion fields can be employed for different subbands,
which mitigates the problem of poor scalability inherent to block-based motion
models. The main weakness of this approach is that it tends to produce arte-
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facts at lower temporal resolutions. It also has worse compression efficiency
than the “t+2D” architecture because motion information for each spatial level
is estimated and coded independently, without exploiting correlations between
the motion vectors of different subbands.

Adaptive Schemes The inherent problems of the two previous architectures
have been addressed by adaptive schemes [66, 67]. Mehrseresht and Taub-
man [66] propose an adaptive spatio-temporal decomposition that continu-
ously adapts between the “t+2D” and the “2D+t” structure. This can remove
artefacts due to motion failure for both reduced spatial and temporal resolu-
tions. Their adaptive scheme solves the problem of spatial aliasing artefacts
due to misalignments, while almost preserving the compression efficiency of
the “t+2D” structure. This is achieved by estimating the local performance
of the motion model, which is assumed to be proportional to the energy in
the high-pass temporal frames. The experimental results, although performed
only on two video sequences, indicate that the transform can significantly
improve the compression efficiency needed for spatial and temporal scalabil-
ity. Similar to [66], Gao et al. [67] use the fact that there is more energy in
highpass subbands in places where the motion model fails. They note that if
mismatches occur, they do so simultaneously in all highpass subbands (i.e.,
HL, LH, HH), and use this fact to reduce computational complexity in the
prediction process. The downside of this approach is that MCTF prediction
needs to be performed twice in order to detect motion mismatches.

Even though there have been significant improvements in the field of scal-
able video coding, the rate-distortion performance of the above-mentioned
WSVC schemes remains inferior to H.264/SVC (and SHVC for that matter).
One reason for this is the fact that WSVC has problems at discontinuities in
the motion field [11]; band-limited sampling of motion fields smooths out the
sharp transitions at moving object boundaries, which creates non-physical mo-
tion. Lalgudi et al. [68] adopt a similar approach to the LIMAT framework [62]
to compress volume rendered images. They determine the underlying geomet-
ric relationship between volume rendered images, which is then incorporated
into the lifting steps of a temporal wavelet transform. Experimental results
show better compression performance than H.264/AVC at much lower compu-
tational complexity than normal motion compensation. Their results suggest
that MCTF can produce excellent results if motion discontinuities are properly
handled. Garbas et al. [69] show similarly promising results in the context of
wavelet-based multiview coding. They apply a 4D-DWT (3D spatiotemporal,
plus 1D for disparities), and observe that the temporal correlation character-
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istics between neighbouring views are almost identical. Similarly, over a small
time instance, the view correlation is nearly constant. In both methods, the
motion discontinuities are properly handled because of some intrinsic proper-
ties of the setup, which motivates the incorporation of motion discontinuities
into the spatio-temporal wavelet transform.

2.3.3 Scalable Coding of Motion and Motion Discontinuities

One of the main contributions lies in the proposal of effective ways of handling
problematic regions around moving objects. For this, the methods we propose
employ with piecewise-smooth motion fields with discontinuities around mov-
ing object boundaries. Unlike block motion, such “physical” motion scales
naturally, except at the discontinuous motion boundaries. In this section, we
show how motion fields with discontinuities at moving object boundaries can
be coded efficiently and scalably. The estimation of such motion fields is a
challenging field of active research on its own; Sect. 3.1.2 reviews motion esti-
mation schemes that aim at estimating appropriate motion fields. Quite apart
from the difficulties associated with the estimation of “true” motion of objects
in a scene, a significant obstacle to the use of such “optical flow” fields for
video coding is their (potentially) high communication cost.

An early attempt to use optical flow in a video coder was made by Krish-
namurthy et al. [70], who propose to use a multiscale optical flow based motion
estimator [71], which estimates a smooth dense flow; each pixel in the target
frame gets (potentially) assigned a different motion vector. The authors show
that the smooth motion fields estimated by their method are compressible, as
long as the motion is not too complicated. More recently, dense motion esti-
mation methods for video coding have been proposed which optimise for both
smoothness and compressibility of the motion field [16]. Modern optical flow
algorithms favour sharp discontinuities at moving object boundaries, which
makes them harder to be compressed. Zheng et al. [17] estimate a piecewise-
smooth motion field using hierarchical block matching; the motion field is
coded using a modification of the depth intra coding algorithm which is part
of 3D-HEVC [72]. They show comparable compression performance to HEVC,
while overcoming the block artefacts inherent to any block motion based video
compression system. Young et al. [73] explicitly handle motion discontinuities,
and advocate “compression-regularized optical flow”, where piecewise-smooth
motion fields are estimated, and discontinuities are explicitly coded. As shown
in [74], such motion fields are highly scalable. In the next section, we show how
the wavelet bases can be adapted in the vicinity of (motion) discontinuities,
in order to make motion fields more compressible.
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Figure 2.15: Highly scalable geometry representation: Two breakpoints on the perimeter
of the same cell (cyan squares) can induce discontinuity information onto the root arcs
(grey lines); such spatially induced breaks are indicated by purple crosses. If the root arc
contains a vertex (red cross), the inducing is stopped.

2.3.3.1 Scalable Representation of Discontinuities using Breakpoints

Mathew and Taubman [15] propose a compelling way of handling disconti-
nuities. In their case, they work on depth maps, and discontinuities appear
at object boundaries. They propose a scheme that incorporates a scalable
and embedded representation of object boundaries using breakpoints, which
are encoded in a separate pyramid structure. The presence of breakpoints is
determined in an R-D optimization framework. They propose a breakpoint-
adaptive DWT (BPA-DWT), which uses breakpoints to avoid wavelet bases
from crossing discontinuity boundaries. This results in a reduction of the
magnitude of subband samples in the vicinity of discontinuities, which miti-
gates the spatial scalability artefacts. Experimental results show an improve-
ment over JPEG2000 for encoding depth maps; in particular, ringing artefacts
around discontinuities are significantly reduced. In this thesis, we make exten-
sive use of breakpoints to efficiently code motion fields; that is, the breakpoints
are used to drive a BPA-DWT on the horizontal and vertical component of
the motion fields.

The technical details on how breakpoints are estimated in an R-D op-
timized way can be found in [15]. In the next section, we summarise how
geometry information can be induced from an existing breakpoint field, which
is relevant for this thesis.

2.3.3.2 Spatial Induction of Breakpoints

Breakpoints are organized in a hierarchical manner, such that breakpoints at
finer spatial levels can be induced from coarser levels.
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x[2k − 2] x[2k] x[2k + 2]

x[2k − 2] x[2k] x[2k + 2]

(a) Analysis

x[2k − 2] x[2k] x[2k + 2]

x[2k − 2] x[2k] x[2k + 2]

(b) Synthesis

Figure 2.16: Lifting implementation of a 1D breakpoint-adaptive DWT. Breakpoints are
used to modify the lifting steps around discontinuities.

The breakpoint field at spatial level η consists of squares of size 2η × 2η

called cells, which are the fundamental unit used for inducing discontinuities.
A cell consists of four perimeter arcs (cyan lines in Fig. 2.15), as well as two
root arcs (grey lines in Fig. 2.15). The significance of root arcs is that they do
not exist at coarser levels in the pyramid. Each arc can contain at most one
breakpoint. If a cell contains exactly two perimeter breakpoints, and the root
arcs at this level have no explicitly coded breaks, connecting the two perimeter
breaks induces breakpoints onto the root arcs. To avoid confusion, we use the
term vertices to identify the explicitly coded breaks. What this means then
is that spatial induction transfers discontinuity information recursively from
coarser level vertices to finer levels in the hierarchy, except where such transfer
would be in conflict with finer level vertices. Since each arc in the hierarchy
may have a coded vertex, the breakpoint representation is described by a
vertex field that is scalable in precision. At lower bit-rates, the representation
is necessarily highly sparse, with most breaks being induced.

Even so, however, signalling a sparse set of vertices at low precision can still
occupy a significant portion of the bit-rate budget in some video compression
applications. In this thesis, we extend the existing spatial breakpoint induction
to a spatio-temporal breakpoint induction (see Sect. 5.4), which can be used to
complete/improve breakpoint fields at finer temporal scales with breakpoint
information from coarser temporal levels.

2.3.3.3 Breakpoint-Adaptive DWT

In this section, we explain in the 1D case how breakpoints can be used to mod-
ify the lifting steps of the 5/3 biorthogonal DWT to efficiently code piecewise-
smooth motion fields; the extension to 2D is straighforward by separable ex-
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(a) 1-level 2D-DWT (b) C1 (c) C2

(d) 1-level 2D BPA-DWT (e) C1 (f) C2

Figure 2.17: Impact of the breakpoint-adaptive DWT (BPA-DWT) in the vicinity of
motion discontinuities. (a) shows a 1-level 2D-DWT without breakpoints, where large
wavelet coefficients can be observed around motion discontinuities, as evidenced in the
crops (b) and (c); (d) shows the 1-level 2D breakpoint-adaptive DWT; the corresponding
crops in (e) and (f) show how the magnitude of the coefficients around discontinuities in
the motion field is greatly reduced by the use of breakpoints. For visualization purposes,
the values of the coefficients have been clipped at ±5.

tension.4 We use Fig. 2.16 to guide the description.
Let Ak denote the arc comprising the pixels x[2k], x[2k+1], and x[2k+2].

Furthermore, we use Ak = −1 to indicate that the arc contains a breakpoint
between pixels 2k and 2k + 1; similarly, Ak = +1 if there is a breakpoint
between 2k+ 1 and 2k+ 2. If the arc contains no breakpoints, Ak = 0. Then,
the breakpoint-adaptive predict step becomes

h[k] = x[2k + 1]−


1
2(x[2k] + x[2k + 2]) Ak = 0

x[2k + 2] Ak = −1

x[2k] Ak = 1

. (2.24)

In the example of the figure, the left arc Ak−1 is free of breakpoints (Ak−1 = 0),
and hence the odd pixel x[2k−1] is predicted from both its parents. The right

4Mathew and Taubman [15] propose a non-separable BPA-DWT, which has slightly im-
proved performance. The general principle of adapting the lifting steps remains the same.
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arc, on the other hand, contains a breakpoint between x[2k] and x[2k + 1]
(Ak = −1), and therefore the odd pixel x[2k + 1] is predicted only from its
“right” parent x[2k + 2].

As proposed in [15], the update step is disabled if there is a breakpoint
present on the arc. That is,

l[k] = x[2k] + 1
4 (I(Ak−1)x[2k − 1] + I(Ak)x[2k + 1]) , (2.25)

where I(Ak) = 1 if Ak = 0, and zero otherwise. In the figure, the pixel at
location x[2k] is therefore only updated from x[2k − 1], since Ak contains a
breakpoint (e.g., I(Ak) = 0), which disables the update step on that arc. The
synthesis simply undoes the update and predict step, again using the modified
weights, as shown in Fig. 2.16b.

The effect of the BPA-DWT can be appreciated in Fig. 2.17, where we show
a 1-level spatial DWT, and compare it with the corresponding breakpoint-
adaptive implementation. One can see how the magnitude of the wavelet
coefficients is significantly reduced around motion discontinuities.

2.4 Chapter Summary

In this first of two background chapters, we introduced the fundamentals of
video compression with a focus on scalability, which is of particular interest
to this thesis. The predictive feedback loop present in hybrid coding schemes
makes them inherently ill-suited for scalability. While the need for scalability
has been acknowledged by the introduction of scalable extensions in the two
latest standardised codecs, their scalability is limited to only a few number of
layers. The feedforward structure of wavelet-based scalable video compression
schemes makes them better suited for highly scalable video compression. We
identified the lack of efficient handling of motion boundaries as a prime reason
for lower R-D performance of WSVC schemes compared than single-layer cod-
ing, and presented an attractive way of compressing piecewise-smooth motion
with discontinuities. In this thesis, we show how this “physical” motion can be
used to perform better motion inference across time. In particular, we will see
how it naturally lends itself to perform TFI if all residual data at a particular
temporal level is quantized to zero. This “intrinsic” upsampling, which is not
possible in existing video codecs, is a key contribution of this thesis. For this
reason, we review existing TFI methods in the following chapter.
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3 Temporal Frame
Interpolation (TFI)

As discussed in the last chapter, the temporal scalability of standardized scal-
able video codecs, e.g., H.264/SVC [6] and SHVC [7], is limited to reducing the
framerate. One of the main reasons that the framerate can not be increased is
that the target-frame anchored motion is estimated in an opportunistic way,
which means that it does not in general describe the “true” motion trajectory
of objects in the scene. In contrast, in the motion anchoring strategies ex-
plored in this thesis, motion information is anchored at reference frames, and
temporal frame interpolation (TFI) is the essential building block that allows
us to form predictions of the target frames.

TFI, or framerate up-conversion (FRUC), is used to increase the framerate
of a video by inserting frames in between existing frames. The ability to
increase the framerate of a video has a variety of practical applications. TFI
is an integral part in displays, which typically are driven at a higher framerate
than the recorded video, to reduce motion blur [75]; furthermore, sequential
colour displays – notably liquid crystal on silicon (LCOS) and micro-mirror
projectors – display only one colour plane at a time, which leads to motion-
colour artefacts without high quality TFI. In distributed video coding [76],
temporally interpolated frames are used as side-information for Wyner-Zyv
decoding. In video post-processing, TFI is used to create slow-motion effects.

Current state-of-the-art TFI methods consist of two main steps: First, the
motion between two neighbouring frames is estimated; Second, the estimated
motion is used to interpolate the temporally upsampled frame. We describe
common motion estimation schemes used in TFI in Sect. 3.1, and then review
state-of-the-art TFI schemes in Sect. 3.2.

3.1 True Motion Estimation

As we have seen in Sect. 2.2.1, the motion estimation in a video compression
system does not attempt to estimate motion vectors that follow the “true”
motion trajectory; instead, the “motion” is chosen so as to minimize the total
number of bits required to code the motion and prediction residual of the frame
textures. In order to distinguish motion estimation schemes that are used in

39



Chapter 3. Temporal Frame Interpolation (TFI)

video compression from the ones used in video processing applications such as
TFI, the latter are referred to as true motion estimation (TME) algorithms.

In this section, we give an overview of the TME methods that are popular
in TFI schemes. While much less used due to their relatively high computa-
tional complexity compared to simple block matching schemes, we also give an
overview of optical flow methods. We focus on motion-discontinuity preserv-
ing optical flow methods, which is what we employ in the methods presented
in this thesis.

3.1.1 Block Matching Algorithms

With the goal of improving block motion fields for TFI, a variety of algorithms
have been proposed that aim at estimating smoother motion fields using block
motion. Smoothness can be achieved both implicitly and explicitly; often,
TME schemes combine both implicit and explicit ways. A common way of
implicitly imposing smoothness is achieved by multiresolution block matching,
where the coarser levels impose smoothness on the finer levels. Unlike explicit
ways, the added advantage of such hierarchical approaches is that they can
help speeding up the motion estimation search.

A widely used TME method is the so-called 3D recursive search (3DRS)
proposed by Haan et al. [77]. 3DRS uses spatio-temporally neighbouring
blocks as motion vector candidates in order to accelerate the convergence of
the algorithm and to implicitly impose smoothness in the motion field. They
further apply a median filter, which can be seen as an explicit way of imposing
smoothness. While it is able to produce smoother motion fields, problems arise
at moving object boundaries with large motion differences. Beric et al. [78]
show that this problem can be mitigated by applying multiple passes of 3DRS.

Ha et al. [79] propose overlapped block motion estimation (OBME), where,
as the name suggests, the idea is to overlap blocks in the block matching
process. This can be achieved by increasing the block size of the matching
function in (2.14), while keeping the actual blocks the same size. Since this
inevitably increases the computational complexity, they propose to perform
the motion search on a sub-sampled grid.

Another way of achieving smoothness explicitly is by adding a penalty term
(smoothness constraint) to the block distortion measure of (2.14), as follows:

E(u) =
∑

m∈K
ρ1 (fa[m + u], fb[m]) + λ

∑
v∈NK

ρ2 (u,v) , (3.1)

where v denotes the motion vectors in the neighbourhood NK of block K

(causal neighbours). We further subscript the matching criterion ρj to empha-
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(a) Fixed block size 8× 8 M̂3→2 (b) H.264/AVC M̂3→2

(c) HEVC M̂3→2 (d) Lu et al. [80] M̂3→2

Figure 3.1: Comparison of motion fields estimated using (a) unconstrained block match-
ing using a fixed block size of 8 × 8, (b) H.264/AVC, (c) HEVC, and (d) with explicit
smoothing constraints and occlusion-handling using Lu et al.’s [80] TFI method. Motion
fields are visualized using the colour-code explained in Fig. A.1.

size that different matching criteria can be used for the data and the penalty
term. For example, Lu et al. [80] use the L1-norm, or sum of absolute dif-
ferences (SAD), for the data and the L2 norm for the penalty term. The
use of SAD for the data term is quite common in TFI schemes because of its
lower computational complexity. It is worth noting that the quality of the
motion field can be greatly improved by adding a penalty term. However, it
also significantly increases the computational complexity of the motion esti-
mation stage compared to (hierarchical) block matching. In fact, as we will
see in Sect. 3.1.2, the formulation becomes similar to what is employed in
optical flow algorithms, while still suffering from artificial discontinuities at
block boundaries.

Fig. 3.1 shows motion fields estimated using block-matching without
smoothness constraint (Fig. 3.1a), with smoothness constraint imposed by
state-of-the-art video coders (Fig. 3.1b/c), as well as with explicit smoothness
constraint obtained from the state-of-the-art TFI scheme by Lu et al. [80]
(Fig. 3.1d). One can see how the block motion field is quite noisy without
smoothness constraints, which is not well-suited for TFI. The tree-structured
block matching schemes employed in video coders inherently favour smooth-
ness within objects. As a matter of fact, the formulations for finding motion
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vectors in a compression scheme (2.19), and the explicit smoothness constraint
used in TMEs (3.1), are very similar. The main difference can be observed
in occluded regions, where the opportunistic nature of motion estimated in a
video coder can be observed. More precisely, in Fig. 3.1b, one can observe
how the motion field estimated by H.264/AVC contains many motion vectors
that point in “arbitrary” directions around moving objects. The motion field
produced by HEVC (Fig. 3.1c) looks much “cleaner”; however, closer inspec-
tion shows a lot of zero motion vectors in such regions (white blocks). The
explicit smoothness handling of Lu et al. [80], coupled together with reasoning
about occluded regions, leads to improved motion around moving objects, as
well as smoother motion within moving objects. TFI schemes that are based
on block motion in general have problems in representing non-translational
motion, such as rotation and zoom. In the next section, we present optical
flow, which aims at estimating a pixel-wise motion field.

3.1.2 Optical Flow

Many modern optical flow methods follow a variational model proposed by
Horn and Schunck [81], and pose the motion estimation problem as an energy
minimization problem, where the energy function consists of a data and a
smoothness term. Before we have a closer look at the data and the smoothness
term, we present the general form of the objective function:

E(u) = ED(u)︸ ︷︷ ︸
data

+λ · ES(u)︸ ︷︷ ︸
smoothness

, (3.2)

where λ > 0 is the regularization weight that is used to impose spatial smooth-
ness in the motion field. Let u = (u,v) denote the displacement between
frames fa and fb; that is, we seek to estimate the motion field anchored at
frame fa, pointing to frame fb. A popular choice of the data term is:

ED(u) =
∑
m
||fb(m + u)− fa(m)||. (3.3)

In its original form, the data term follows a brightness constancy assumption,
which is often not valid in natural sequences. For this reason, the data term
has been extended to account for illumination changes by adding a second
data term that is invariant under illumination changes; for example, Brox et
al. [82] propose to add the gradient of the image. That is,

ED(u) =
∑
m

1
2 ||fb(m + u)− fa(m)||+ 1

2β||∇fb(m + u)−∇fa(m)||, (3.4)
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where ∇ is the discrete gradient operator, and β is a weight that balances the
two matching costs of the data term.

The smoothness term is typically designed to be edge-preserving [83, 84].

ES(u) =
∑
m
w(m)||∇u(m)||, (3.5)

where ||∇u(m)|| is the total variation (TV) regulariser, and w(m) =
exp(−||∇fa||) is a structure adaptive map that aims at maintaining motion
discontinuity.

Over the last three decades, there has been an impressive amount of work
on improving the classical Horn-Schunck objective. In the interest of concise-
ness, we fast-forward to the most recent, best-performing optical flow methods,
with a particular focus on optical flow methods that preserve motion discon-
tinuities, since this is the type of motion fields the subsequent work in this
thesis requires.

Xu et al.’s [85] motion detail preserving (MDP) optical flow algorithm uses
an extended coarse-to-fine refinement framework, which is able to recover mo-
tion details at each scale by reducing the reliance of flow estimates that are
propagated from coarser scales. Large displacements are handled by using
sparse feature detection and matching, and a dense nearest-neighbour patch
matching algorithm is used to handle small textureless regions which are likely
missed by the feature matching algorithm. Furthermore, an adaptive struc-
ture map which maintains motion discontinuity is used in the optical flow
regularization term.

Wulff and Black [86] propose a layered motion model, which is able to
obtain piecewise-smooth motion fields with sharp discontinuities on sequences
that are heavily affected by motion blur. While currently limited to two layers,
the authors show that the scheme is quite widely applicable. Revaud et al. [87]
propose an edge-preserving interpolation of correspondences for optical (EPIC)
flow. They estimate a sparse set of correspondences between the two frames,
also referred to as “features”, which are then interpolated in an edge-preserving
way to a dense motion field. While this approach is able to account for large
displacements, the fact that only the finest spatial resolution is used means
that the method is prone to errors in regions of repetitive textures.

The edge-preserving sparse-to-dense interpolation proposed by Revaud et
al. [87] has been used by various other recent state-of-the-art optical flow
methods to go from a set of sparse matches to a dense motion field, while
preserving edges. Menze et al. [88] propose “discrete flow”, where they con-
jecture that computing the integer part of the motion is the hardest problem,
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(a) Ambush 3 1
2 (f25 + f26) (b) Ground Truth M25→26

(c) Horn and Schunck [81] M̂25→26 (d) MDP-2 [85] M̂25→26

(e) EPIC flow [87] M̂25→26 (f) Full flow [89] M̂25→26

Figure 3.2: Comparison of various optical flow methods on a frame from the Sintel
test dataset “Ambush 3”. (a) shows the average of the two input frames; (b) shows the
ground truth motion field. (c-f) show the estimated motion fields obtained using Horn
and Schunck [81], Xu et al.’s motion detail preserving optical flow (MDP-2) [85], Revaud
et al.’s edge preserving interpolation of correspondences (EPIC) flow [87], and Chen and
Koltun’s full flow [89], respectively. Motion fields are visualized using the colour-code
explained in Fig. A.1. Images from http://sintel.is.tue.mpg.de/results.

and formulate optical flow estimation as a discrete inference problem in a con-
ditional random field. EPIC flow is then used to obtain sub-pixel flow and
extrapolate motion in occluded regions. Chen and Koltun [89] propose “full
flow”, where they optimize the classical Horn-Schunck objective [81] globally
over full regular grids. Interestingly, they show that large displacements can
effectively be handled without any feature matching, as used for example in
[87].

We end this section with a motivating example of the performance of state-
of-the-art optical flow methods. Fig. 3.2 shows estimated motion fields for
a very challenging sequence which contains large motion that is affected by
motion blur and atmospheric effects. One can appreciate the significant im-
provements that have been achieved in recent years.
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(a) Target-based motion anchoring (b) Reference-based motion anchoring

Figure 3.3: Comparison of target-based and reference-based anchoring of motion. (a)
shows the target-based motion anchoring, where for each block in the target frame, the
best matching block in the reference frames is found; (b) shows the reference-based
motion anchoring, where for each block in one of the reference frames, the best matching
block in the other reference frame is found. Appropriate scaling is used to map the block
to the target frame.

3.2 State-of-the-Art in TFI

The field of TFI has been an active field of research for over two decades.
With the ever growing increase of both spatial and temporal resolution of
video content, the use of good motion fields, as well as a proper handling of
occluded regions, has become ever more important. In the following, we give
an overview of TFI methods, with a specific focus on TFI schemes that aim at
high quality interpolation; for a comprehensive overview of fast TFI schemes,
the interested reader is referred to [90].

When designing a TFI method, there are a number of fundamental design
choices that affect the performance of the scheme. One choice is whether a
block-based or an optical flow motion estimation scheme is to be used. If
block-based motion is used, many schemes use overlapped block motion com-
pensation (OBMC) to reduce block artefacts; as its name suggests, each pixel
of the target frame is predicted as a linear combination of the estimates given
by motion vectors of its block as well as neighbouring blocks. It is worth
highlighting that while OBME (see Sect. 3.1.1) creates smoother, more accu-
rate motion vectors, OBMC creates smoother textures since texture informa-
tion from multiple locations is averaged together. Next, it has to be decided
whether the motion estimation is performed at the reference or at the target
frame; this is visualized in Fig. 3.3. Another important decision is whether
real-time performance is required or not, which directly impacts the quality
of motion estimation as well as complexity of texture optimizations.

Before we start with the review, we point out an important feature of TFI
schemes, which is how regions around moving objects are handled. We use
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(a) Preceding reference fa (b) Target frame fb (c) Succeeding reference fc

Figure 3.4: Importance of occlusion-handling. Some regions in the target frame fb are
only visible in either of the reference frames fa or fc. In this example, yellow and cyan
regions are not visible in fa and fc, respectively, and therefore should only be predicted
from fc and fa, respectively.

Fig. 3.4 to give more insight into the problem of occlusions and disocclusions.
The figure shows two reference frames fa and fc, and the non-existing tar-
get frame fb (in grey). In the sequence, the moving object (MO) is a hand
which lifts an apple, and the background (BG) is static. Around the MO,
certain regions get “forward” disoccluded (uncovered) as we transition from
fa to fb (yellow in Fig. 3.4). Likewise, there are regions that get “reverse”
disoccluded if we transition (in reverse direction) from frame fc to the target
frame fb; these are highlighted in cyan in the figure. As the reader can con-
vince him-/herself, forward disocclusions are regions that are not visible in fa,
while reverse disocclusions are not visible in fc, and should only be predicted
from the reference frame they are visible in. Appropriate occlusion handling
is particularly important on high-resolution content, where such regions can
become quite large, in particular for fast moving objects.

3.2.1 TFI Schemes with Target-based Motion Anchoring

Schemes where the motion is anchored at the target frame are generally re-
ferred to as bilateral schemes; since we find this term ambiguous, we often use
the more expressive term of target-based motion anchoring. While in a video
compression scheme, this target-based motion anchoring seems the “natural”
choice, it might be a bit more surprising how this can be achieved in a TFI
scheme, where the target frame is not available. The underlying principle
of bilateral schemes is as follows: the (non-existing) target frame is parti-
tioned into blocks. For each block, the linear motion is searched for that
results in the minimum block distortion between the corresponding regions
in the two reference frames fa and fc, as illustrated in Fig. 3.3a. An exam-
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ple of a bilateral motion estimation scheme was proposed by Choi et al. [91];
in this method, block artefacts are reduced using an adaptive OBMC based
on the reliability of neighbouring motion vectors. Wang et al. [92] perform
motion-compensated prediction of the intermediate frame from both reference
frames independently, and then blend these predictions together using a trilat-
eral filter. Veselov and Gilmutdinov [93] propose a hierarchical bidirectional
multi-stage motion estimation algorithm. They partition the target frame into
non-overlapping, hierarchical blocks, and approximate the “true” motion flow.
Each pixel is blended from multiple reference pixels. Raket et al. [94] perform a
symmetric total-variation optical flow estimation at the unknown target frame,
which is able to roughly halve the computation time compared to traditional
bidrectional motion estimation schemes that estimate both forward and back-
ward flows. Common to all target-anchored motion estimation schemes is the
fact that disoccluded regions are not explicitly handled. Furthermore, new
motion has to be estimated for every target frame that is to be interpolated,
making such methods less attractive for large framerate upsampling factors.

3.2.2 TFI Schemes with Reference-based Motion Anchoring

Reference-based motion anchoring schemes partition a reference frame (fa or
fc) into blocks, and find for each block the motion vector MV that corresponds
to the best match in the other reference frame (fc or fa). Then, each block
is mapped to the target frame by appropriate scaling of the value of the MV.
Jeong et al. [95] perform a multi-hypothesis motion estimation. The best
motion hypothesis is selected by optimizing the cost function of a labelling
problem. Pixels in the target frame are computed as a weighted combination
of several pixels from the reference frame. They show improved reconstruction
quality, at the expense of a significant increase in computational complexity.
Dikbas et al. [90] use an adaptive interpolation between the forward and
backward warped frame. Their method has low computational complexity,
but the implicit occlusion handling can lead to visual distortions if disoccluded
regions become large. Chin and Tsai [96] estimate a forward optical flow field
using [97], and apply the motion to each pixel location. Holes and multiple
mapped locations in the upsampled frame are handled using simple heuristics
based on texture information.

3.2.3 Occlusion Handling

One might be led to believe that target-based TFI schemes have the advan-
tage that, by design, there are no holes or double mappings to be resolved in
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the target frame. On the negative side, occluded regions cannot be explicitly
handled, since they are not observed. In reference-based schemes, there will
inevitably be regions in the target frame where multiple blocks overlap; this
happens on the leading side of moving objects, for example when a foreground
object moves over a region in the background. On the trailing side of objects
in motion, there will be regions that are not hit by any block; the resulting
holes have to be handled. While this might appear to be a disadvantage, it
turns out that it also enables a better handling of such regions than the “op-
portunistic” handling of bilateral schemes, which inevitably blend foreground
and background information, which results in ghosting artefacts.

Several reference-based frame interpolation methods have been proposed
that explicitly handle occluded regions; such methods in general show im-
proved performances compared to similar methods without occlusion handling.
Kim et al. [98] estimate the forward and backward motion between the two
reference frames, and then use linearity checking between the forward and
backward flow to detect occluded regions. Cho et al. [99] use a bidirectional
motion estimation scheme that is based on feature trajectory tracking, which
allows the authors to detect occluded regions. Kim et al. [100] estimate motion
using a modified 3DRS (M3DRS) in a spatial hierarchy with subsequent mo-
tion vector refinement using a temporal motion smoothness criterion. Motion
vectors from adjacent blocks are grouped together, and overlapping regions are
resolved by selecting the one with lower SAD between the two reference frames.
Herbst et al. [101] perform bidirectional motion compensation by computing
both a forward and a backward flow, which are then independently mapped to
the target frame. Assuming that each pixel location of the target frame is vis-
ible in at least one reference frame, occluded regions are detected using a flow
consistency criterion. Double mappings in the target frame are handled by
assigning the motion with larger velocity as foreground motion, which, as the
authors point out, is not always valid; in particular, the assumption that the
faster moving object is the foreground object fails if the background motion is
larger than the motion of the foreground object. Stich et al. [102] propose a
“perception-motivated” frame interpolation method. They partition the refer-
ence frame into superpixels, which are then mapped using homographies. As in
[101], they resolve double mappings by assuming that the faster moving pixel
is closer to the camera. Occluded regions are detected using a connectedness
criterion proposed in [103]. Lu et al. [80] propose a multiframe based method
which identifies occluded regions as well as double mappings in the upsam-
pled frame using four reference frames. Since their method is block-based, the
frames are interpolated using adaptive OBMC to reduce blocking artefacts,
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(a) Ground Truth (b) Motion field estimated using MDP [85]

(c) Ground Truth (d) Veselov et al. [93] (e) Jeong et al. [95] (f) Lu et al. [80]

Figure 3.5: Example interpolated frames from the “Kimono” sequence, obtained using
different TFI schemes. (a) shows the original frame; (b) shows the motion, estimated
using MDP-flow [85]; the second row shows crops of (c) the ground truth, (d) the inter-
polated frame using a target-anchored scheme [93] without occlusion handling, as well as
reference-anchored schemes with (e) implicit [95] and (f) explicit [80] occlusion handling.

which also reduces the amount of high-frequency content of the upsampled
frames.

In Fig. 3.5, we compare the interpolated frames produced by three state-
of-the-art TFI methods on a crop of a frame of the “Kimono2” sequence,
where a woman walks to the right. Fig. 3.5d shows the result produced by
Veselov et al. [93], which uses a target-based anchoring, and hence is not able
to handle occluded regions. One can see the ghosting artefacts around the
head of the woman. In Fig. 3.5e, we show the interpolated frame produced
by Jeong et al. [95], which does not explicitly handle occlusions; however,
their method employs a involved texture optimization step, which is able to
improve the results. Lastly, Fig. 3.5f shows the results of Lu et al. [80], which
is a reference-based scheme with explicit occlusion handling.

The performance of a TFI scheme is normally evaluated by dropping all
odd frames from a video sequence, and then interpolating the odd frames from
the even ones. The interpolated frame f̂b is then compared to the original fb,
usually in terms of PSNR. To the best of our knowledge, with the exception
of [104, 105], existing TFI schemes interpolate frames under a constant ve-
locity assumption, and hence PSNR comparisons are only really justified for
sequences where the objects are following a constant velocity motion between
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any pair of temporally adjacent even frames. As stated in [104], the incorpo-
ration of higher-order motion models could have a significant impact on the
compression performance; in Sect. 7.3, we experimentally show that this is in-
deed the case. One reason for constant velocity assumption is that in order to
incorporate higher order motion models (e.g., acceleration, jerk, ...), an accu-
rate model of the underlying motion flow is required; such motion models are
absent in many of the prior schemes. In [105], the experiments are performed
on reasonably simple sequences with hardly any disocclusions.

3.2.4 Observations and Recommendations

Based on the literature review presented in this chapter, we now provide a list
of observations pertaining to TFI methods.

• Bilateral TFI schemes, where the motion fields are estimated at the (non-
existing) target frame, are unable to detect and hence handle occluded
regions. Furthermore, motion has to be estimated for every frame to be
interpolated in between the two reference frames, which does not scale
well with higher frame upsampling factors;

• TFI schemes that employ block motion are unable to represent non-
translational motion, such as zoom and rotation. Furthermore, block-
based schemes usually employ OBMC to reduce blocking artefacts. This
inevitably blurs textured regions, which “unnecessarily” reduces the
quality of the interpolated frames;

• Only few TFI methods have been proposed that employ optical flow as
opposed to block motion, mostly due to their relatively high compu-
tational complexity. However, we observe that the computational cost
of block-based schemes that aim at high-quality interpolated frames is
comparable to state-of-the-art optical flow methods;

• Many TFI papers evaluate their method on low-resolution, low-quality
sequences, which are not reflective of today’s typical video content. In
particular, high-quality motion and occlusion handling become much
more important. Evaluation of TFI performance should therefore be
performed on high-quality content;

• Relatively few TFI methods explicitly handle regions around moving ob-
jects; out of these, most effort is on handling disoccluded regions (i.e.,
holes), which arise on the trailing side of moving objects. Double map-
pings that happen on the leading side of moving objects, are very rarely
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mentioned at all in the literature; if they are handled, the reasoning
is either based on texture information, or selecting the largest velocity
motion vector as foreground motion, which, in general, is not correct.

We conclude that the best TFI results can be expected from a scheme
that uses “physical” rather than “block” motion, as can be obtained using
state-of-the-art optical flow estimation methods. Furthermore, in order to be
able to handle occluded regions and easily incorporate framerate upsampling
factors larger than two without having to re-estimate motion, a reference-based
motion anchoring should be used.

3.3 Chapter Summary

In this second background chapter, we introduced various true motion esti-
mation schemes that aim at estimating the “true” trajectory of objects, or
at least improve on the prediction field that is used in video compression
schemes. For their ease of implementation and relatively low computational
complexity, most TFI schemes employ block motion fields. In order to pro-
duce high quality results, the block motion is further refined using implicit and
explicit smoothness constraints. This results in the fact that best-performing
block-based TFI methods use sophisticated, time-consuming motion estima-
tion schemes, with computational complexities similar to modern optical flow
estimation schemes; however, optical flow schemes are able to estimate supe-
rior quality motion fields which do not suffer from artificial block artefacts.
All motion anchoring strategies we propose in this thesis employ a reference-
based motion anchoring with “physical” motion, and TFI is performed to form
predictions of the target frames. With such a seamless integration of TFI with
video compression, the computationally expensive motion (re-)estimation at
the decoder can be avoided, which enables high-quality frame interpolation.
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4 Motion-Discontinuity-Aided
Motion Field Operations

As we have seen in Chapter 2, existing video codecs anchor motion infor-
mation at the frame that is to be predicted. In this thesis, we part from
this conventional wisdom and investigate new motion anchoring strategies for
highly scalable video compression, where motion fields are anchored at refer-
ence frames instead. As it turns out, this has a number of advantages over
the traditional way of anchoring motion at reference frames. One of the main
challenges using such a reference-based motion anchoring is that in order to
be used for predicting the target frames, motion fields need to be warped to
the target frames. This process leads to holes in disoccluding regions, as well
as double mappings in the warped motion fields.

In this chapter, we describe the two elementary operations on motion fields,
namely motion field inversion and motion inference, which enable the change
of the motion field anchoring and perform a bidirectional prediction of the tar-
get frame. The proposed methods only use motion information and derived
motion discontinuity information to disambiguate and handle problematic re-
gions around moving objects.

We start by presenting how motion discontinuities can be mapped from
one frame to another in Sect. 4.1; essentially, one has to find out which side
of the motion discontinuity belongs to the foreground object, since motion
discontinuities “travel” with the foreground object. In Sect. 4.2, we describe
how motion fields can be inverted; in particular, we propose a procedure that
guarantees a motion assignment for any location in the target frame, and show
how motion discontinuities can be used to identify the foreground motion in
regions that get double mapped. We evaluate the motion field inversion process
in a unidirectional TFI scenario, which potentially is an interesting application
in its own right.

However, the true potential of the reference-anchoring lies in its bidirec-
tional prediction capabilities, for which we require a second motion field oper-
ation we call motion inference, which are presented in Sect. 4.3. In Sect. 4.4,
the two motion field operations are evaluated in a bidirectional TFI setting
using our BOA-TFI scheme,1 where a comprehensive evaluation and compar-

1Initial results of the BOA-TFI scheme were presented in [19]; the comprehensive evalu-
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Figure 4.1: Temporal induction of breakpoints, in order to warp motion discontinuity
information from reference to target frames. (1) The discontinuity line segment la is
mapped from fa to frame fc, using the motion on either side of the discontinuity. Search
segments s are formed by connecting the endpoints of the line segments (e.g., BH1

c,1 and
BH2

c,1 ); for one of the endpoints (BH1
c,1 in this example), the search segment intersects with

motion discontinuities in fc, which we call a compatible mapping. In step (2), the line
segment is mapped to fb, using the identified compatible (foreground) motion.

ison with other state-of-the-art TFI schemes highlights the advantages of the
proposed scheme.

4.1 Warping of Motion Discontinuities

One key distinguishing feature of the proposed scheme is the use of motion
discontinuity information to identify foreground/background moving objects;
it is used during the inversion of motion fields to resolve double mappings in
regions of motion field folding (see Sect. 4.2), as well as to extrapolate motion
in disoccluded regions during the motion field inference process (see Sect. 4.3).
As mentioned in Sect. 2.3.3, we use a highly scalable motion discontinuity rep-
resentation using breakpoints to efficiently code the piecewise-smooth motion
fields. In this and the next chapter, we use breakpoints as motion discontinuity
representation for reasoning in the temporal domain. In Sect. 6.1, we present
a more generic mechanism for representing motion discontinuities, which does
not depend on the existence of breakpoints.

In the following, we present how breakpoints can be transferred from ref-
erence frames to the target frame we seek to interpolate. As described in
Sect. 2.3.3.2, breakpoints lie on grid arcs, and can be connected to form dis-
continuity line segments. The underlying idea for mapping discontinuity line
segments from reference to target frames is that motion discontinuities displace
with the foreground object. Since the presence of a breakpoint necessarily im-

ation presented in this chapter has appeared in [20].
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plies that the motion on either side of it is significantly different, the aim is to
identify the foreground motion by performing a breakpoint compatibility check
(BCC) between the two reference frames fa and fc, and then warp compat-
ible line segments to the target frame by appropriately scaling the identified
foreground motion.

We now provide a more detailed description of the two steps of the temporal
breakpoint warping procedure, which is visualized in Fig. 4.1. In the following,
we focus on one line segment, formed by connecting two breaks belonging to
the same cell; the same procedure is repeated for all cells. Let Ba,j , j ∈ {1, 2},
be the two breakpoints that form the line segment la, and let uHpa→c,j , p ∈ {1, 2},
be the motion on side p of breakpoint Ba,j that maps from frame fa to frame fc.
Then, in step (1) of the temporal breakpoint warping procedure (see Fig. 4.1),
breakpoints are mapped to fc as follows:

B
Hp
c,j = Ba,j + uHpa→c,j . (4.1)

We denote the warped line segments as lHpc . In order to determine which line
segment lHpc lies closer to a motion discontinuity in frame fc, we form search
line segments sj = [BH1

c,j , B
H2
c,j ], and extend them on both sides by (at most)

half the length of sj . The motion under hypothesis Hp that maps Ba,j closer
to the intersection of sj with a line segment described by breakpoints in fc (if
any) is marked as compatible. If there is a hypothesis Hp for which uHpa→c,j is
compatible for both j’s (i.e., for both breakpoints that form the line segment),
then lHpc is marked as compatible line segment.

In step (2) of the procedure (see Fig. 4.1), all compatible line segments are
mapped to the target frame fb using their compatible motion uHpa→b,j . We note
that in the absence of any other knowledge, uHpa→b,j = 0.5uHka→c,j . In the next
section, we show how motion discontinuity information can be used to invert
motion fields.

4.2 Motion Field Inversion

In this section, we describe how motion fields can be inverted, which is an
essential operation in the reference-based anchoring schemes in order to map
motion from reference to target frames, so that they can serve as prediction
references. That is, from a motion field Mi→j which is anchored at frame fi,
pointing to frame fj , we want to compute its inverse,

Mj→i = (Mi→j)−1, (4.2)
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which requires to establish a one-to-one mapping between locations in fi and
fj . In regions around moving objects, regions might get uncovered, and hence
they will never get mapped. For this reason, motion fields are not invertible
in a mathematical sense. Nonetheless, the method we propose to warp motion
fields is guaranteed to leave no holes, and hence enables the inversion of motion
fields.

The most challenging part of the motion field warping process is the “cor-
rect” handling of regions around moving objects; more specifically, on the
leading side, the motion field folds, which means that motions from different
objects map to the same location. In such “double mapped” regions, the aim
is to identify the motion belonging to the (local) foreground object. On the
trailing side of moving objects, regions get disoccluded, which means that they
are not visible in the reference frame. More specifically, the motion in such
regions cannot be observed; the procedure we propose here assigns a smooth
interpolation between background and foreground motion, which is reason-
able in a unidirectional prediction scenario. In Sect. 4.3, where we consider
a bidirectional prediction scenario, we will modify the motion in disoccluded
regions. In the next section, we describe a method to warp motion fields that
uses reasoning about motion discontinuities in order to handle traditionally
difficult regions around moving objects.

4.2.1 Cellular Affine Warping of Motion

In this section, we describe a procedure that allows us to warp motion infor-
mation from one frame to another. In order to account for expanding and
contracting motion, we partition the available motion field Mi→j into small
cells in the domain of the reference frame fi, dividing each cell into two tri-
angles, as shown in Fig. 4.2a. For the following discussion, we use a fixed size
of 1 × 1, noting that the computational efficiency could be greatly improved
by adopting larger cells in regions of smooth motion; we present a method to
obtain such an adaptive mesh in Sect. 7.2.

We use x = (x, y) to indicate continuous locations, and m = [m,n] to
indicate discrete (integer) locations. Since Mi→j only has motion at integer
locations m, we use Ti→j(x) to denote the affine interpolated motion of Mi→j ,
which maps the continuous-valued location xi from frame fi to xj in frame fj .
That is,

xj = xi + Ti→j(xi). (4.3)

In order to guarantee that the warped motion field from frame fi completely
covers the target frame fj , we extend the affine flow field Ti→j by 1 pixel
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(a) Triangular partition of the reference motion field Ma→c; we
denote the continuous affine interpolated motion as Ta→c.

(b) Triangles are warped to the target frame fb using Ta→b, where
they form a distorted mesh.

Figure 4.2: The proposed cellular affine warping (CAW) procedure partitions the reference
motion field into triangles. Each such triangle is then mapped from the reference fi to
the target frame fj , where each integer location gets assigned the corresponding affine
motion. In regions that get disoccluded, triangles stretch without changing orientation
(e.g., the yellow triangle), and the affine model assigns an interpolated value between the
foreground and background motion, without leaving holes.

beyond the boundaries of frame fi, assigning zero motion to the extension.
In this way, the warped motion exhibits no holes. Due to its nature, we call
the procedure of mapping triangles from one frame to another cellular affine
warping (CAW).

As we map triangles from fi to fj , whenever Ti→j(xi) falls onto an integer
location mj in the target frame fj , we record its motion as

M̂j→i[mj ] = −Ti→j(xi). (4.4)

As illustrated in Fig. 4.3, one of three categories can be readily assigned
to each mapped triangle: visible in both frames (black); disoccluded in tar-
get frame (yellow); and folded (double mapping) in target frame (magenta).
In other words, the motion inversion process allows us to obtain a disocclu-
sion (and folding) mask without communicating any side information (see
Fig. 4.3b); this is in stark contrast to video compression systems with a
target-based motion anchoring, where this information has to be explicitly
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(a) Mi→j (b) M̂i→j + DF mask

Figure 4.3: The proposed CAW method for inverting motion fields readily observes dis-
occlusion (yellow) and folding (magenta) in the target frame fj ; the obtained disocclusion
and folding (DF) mask will be valuable in a bidirectional prediction process.

communicated as side-information. We record this valuable information in a
disocclusion mask Ŝj→i:

Ŝj→i[m] =

 0 m disoccluded in (Mi→j)−1

1 otherwise
. (4.5)

Each location in fj will be assigned motion that can be used to predict fj from
fi. Disoccluded regions, which arise on the trailing side of objects in motion,
are assigned a smooth (stretched) motion field during the inversion process.
On the leading side of moving objects, locations might be assigned multiple
motion candidates due to folding of the triangular mesh. In the following
section, we explain how reasoning about motion discontinuities can be used to
identify the motion of the foreground object in such regions.

4.2.2 Resolving of Double Mappings

As the CAW procedure maps triangles from reference to target frames in order
to compute the inverted motion field M̂j→i, multiple triangles might overlap
at location mj in the target frame fj . In other words, there are (at least) two
locations x1

i and x2
i in fi, which are mapped by Ti→j(·) to the same location

mj in fj , i.e.,
x1
i + Ti→j(x1

i ) = x2
i + Ti→j(x2

i ) = mj . (4.6)

This happens on the leading side of moving objects, where the motion field
is folding (i.e., where foreground objects cover background objects). Our ap-
proach to identify the foreground motion and hence disambiguate such double
mappings is based on the observation that motion discontinuities travel with
the foreground object. We therefore want to find the motion which maps the
motion discontinuity from frame fi to a motion discontinuity in frame fj .2 We

2We remind the reader that the motion discontinuity information in the target frame fj
was mapped using the hierarchical spatio-temporal breakpoint induction (HST-BPI) proce-
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4.2 Motion Field Inversion

(a) Reference frame fi (b) Target frame fj

(c) Reference frame fi (d) Target frame fj

Figure 4.4: Resolving of double mappings in the mapped motion field by reasoning
about motion discontinuities (represented as red dashed lines around the sceptre). The
key idea in identifying the foreground motion is that the motion discontinuities travel with
the foreground object. In the example, B1

j = B1
i + Ti→j(B1

i ) maps closely to motion
discontinuities, whereas B2

j = B2
i + Ti→j(B2

i ) is away from any motion discontinuity;
consequently, M̂j→i[mj ] = −Ti→j(x1

i ).

use Fig. 4.4 to guide the more detailed explanation of the proposed method
to resolve double mapped regions.

The figure shows a crop of the “Ambush 7” sequence, where a sceptre is
lifted and moves on top of the snow in the (static)3 background. Two points in
Fig. 4.4a – one on the foreground object (x1

i ), and one in the background (x2
i )

– map to the same (integer) location mj in the target frame fj (Fig. 4.4b). The
grey region in Fig. 4.4d outlines the “true” inverse motion field at frame fj ,
which is not known to the procedure; only the temporally induced breakpoints
(green dashed line) are used to disambiguate the double mapping. The key idea
behind the proposed method is that the two points x1

i and x2
i that create the

double mapping in fj must be separated in the reference frame fi; moreover,
along the line connecting the two points in fi, denoted as l, there must be a

dure explained in Sect. 4.1.
3The example uses a static background for ease of explanation; we note that the method

remains valid for moving backgrounds.
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discontinuity in the motion field.
If we map each point on the line l from frame fi to frame fj , using Ti→j ,

we expect to see a discontinuous jump (red cross in Fig. 4.4c); we denote the
points on either side of this discontinuous jump as B1

i and B2
i . The location

of these points mapped to fj is

Bp
j = Bp

i + Ti→j(Bp
i ), p ∈ {1, 2}. (4.7)

The importance of these points is that one of the Bp
j s is expected to fall

close to a motion discontinuity, whereas the other one is not. The foreground
motion is the motion of the point which maps closer to a motion discontinuity.
In practice, we query the breakpoint cell structure for breaks, which can be
done very efficiently. That is, one Bp

j should fall into a cell that contains
breakpoints, whereas the other falls into a cell without any breakpoints in the
target frame fj . Using Cpj to denote the cell in frame fj that the mapped
breakpoint Bp

j falls into, we define a breakpoint indicator function Ibreaks(·)
that is 1 if the cell contains at least one break, and 0 otherwise. Then,

M̂j→i[mj ] =


−Ti→j(x1

i ) Ibreaks(C1
j ) = 1 ∧ Ibreaks(C2

j ) = 0

−Ti→j(x2
i ) Ibreaks(C1

j ) = 0 ∧ Ibreaks(C2
j ) = 1

M̂old
j→i[mj ] otherwise

, (4.8)

where M̂old
j→i[mj ] denotes the previously assigned motion in the double mapped

location. In other words, whenever the test is inconclusive, we keep the motion
vector that was first assigned. The test is inconclusive mostly in regions of
thin moving objects, where the background motion is more likely to map to
the motion discontinuity of the trailing side of the moving object in the target
frame. In Sect. 6.1, we present a different motion discontinuity measure that
is able to distinguish between motion discontinuities on the trailing and the
leading side of moving objects, and hence does not suffer from this particular
problem.

4.2.3 Unidirectional Temporal Frame Interpolation

The ability to invert motion fields can be used to create motion fields that
can predict the target frame fb from the reference frame fa. We evaluate the
proposed motion inversion method on various examples of the Sintel sequence
(see Sect. A.2), where ground truth motion is known between any pair of
consecutive frames. In the following, let fa and fc denote two reference frames,
and fb be the target frame we wish to interpolate in between the two reference
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4.2 Motion Field Inversion

(a) Bandage 1 M14→15 (b) Ŝ14.5→14

(c) Bandage 1 mapped M̂14.5→14 (d) Crops of (c)

(e) Bandage 1 interpolated f̂14.5 (f) Crops of (e)

(g) Cave 4 M4→5 (h) Ŝ4.5→4

(i) Cave 4 mapped M̂4.5→4 (j) Crops of (i)

(k) Cave 4 interpolated f̂4.5 (l) Crops of (k)

Figure 4.5: Motion field inversion results for the “Bandage 1” and “Cave 4” sequences
from the Sintel dataset. (a/g) show the ground truth motion fields; (b/h) show the
estimated disocclusion (yellow) and folding (magenta) masks; The second and fifth row
show the mapped and inverted motion fields; the third and last row show the interpolated
frames produced using the inverted motion fields.
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(a) Cave 2 M4→5 (b) Ŝ4.5→4

(c) Cave 2 mapped M̂4.5→4 (d) Crops of (i)

(e) Cave 2 interpolated f̂4.5 (f) Crops of (k)

(g) Bamboo 2 M25→26 (h) Ŝ25.5→25

(i) Bamboo 2 mapped M̂25.5→25 (j) Crops of (c)

(k) Bamboo 2 interpolated f̂25.5 (l) Crops of (e)

Figure 4.6: Motion field inversion results for the “Cave 2” and “Bamboo 2” sequences
from the Sintel dataset. (a/g) show the ground truth motion fields; (b/h) show the
estimated disocclusion (yellow) and folding (magenta) masks; The second and fifth row
show the mapped and inverted motion fields; the third and last row show the interpolated
frames produced using the inverted motion fields.
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frames.
From the motion field Ma→c, one can readily compute a scaled version that

points to the intermediate frame fb, as

M̂a→b = αMa→c, (4.9)

where α = 0.5 in the case of doubling the framerate under a constant veloc-
ity assumption. In order to serve as prediction reference to interpolate frame
fb, M̂a→b is mapped to the target frame using the CAW procedure explained
in Sect. 4.2.1, and double mappings are resolved as described in Sect. 4.2.2.
Fig. 4.5 and Fig. 4.6 show example inverted motion fields, as well as “uni-
directionally” interpolated target frames f̂b, which are obtained by using the
motion M̂b→a to map the texture information from the reference frame fa to
the target frame fb.

One can see that the proposed motion inversion procedure is able to predict
a credible interpolated frame in all regions except regions that get disoccluded
between frames fa and fb (yellow regions in the disocclusion masks in the
figures). In those regions, the CAW procedure assigns an interpolated motion
between the motion of the foreground and the background object, which can
hardly be seen as “physical” motion. Nonetheless, there is motion assigned at
all locations. On the leading side of moving objects, where foreground objects
move on top of background objects, double mappings are created (magenta
regions in the disocclusion and folding masks of Figs. 4.5 and 4.6). One can
see how in most regions, the correct foreground motion is identified.

In the next section, we present the second motion field operation, which will
allow us to obtain a bidirectional prediction scheme with occlusion handling.

4.3 Reverse Inference of Motion Fields

Around moving object boundaries, there will be regions that get disoccluded
(e.g., uncovered) from frame fa to fb; such regions are not visible in frame fa.
While not true in general, it is at least highly likely that such regions are visible
in frame fc, which is why we are interested in obtaining Mc→b. One could be
tempted to estimate Mc→a, and then compute Mc→b as a scaled version of
Mc→a; that is, apply the exact same method described in the previous section
“backwards” in time. To the best of our knowledge, this strategy is the one
followed by all existing TFI schemes with bidirectional prediction, including
TFI schemes that employ optical flow [101].
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We avoid this strategy for two main reasons:

1. Motion estimation is the most time-consuming process of TFI and in
modern video compression systems. Furthermore, in a (highly scalable)
video coder, this would be mostly redundant information;

2. It is very likely that Ma→c 6= (Mc→a)−1, in particular around moving
objects. Hence, their scaled versions will not be geometrically consistent
in frame fb (see Fig. 4.7).

In this thesis, we propose to instead infer M̂c→b, anchored at frame fc, from
Ma→c and its scaled version M̂a→b, as follows:

M̂c→b = M̂a→b ◦ (Ma→c)−1, (4.10)

where ◦ denotes the composition operator. That is, each (integer) location mc

in M̂c→b gets assigned motion according to

M̂b→c[mc] = − Ta→c(xa)︸ ︷︷ ︸
= 1
α
Ta→b(xa)

+Ta→b(xa) =
(

1− 1
α

)
︸ ︷︷ ︸
<0 ∀α∈]0,1[

Ta→b(xa), (4.11)

where mc = xa + Ta→c(xa), and α is the scaling factor. Because the inferred
motion field is pointing in the “reverse” direction of the motion fields that
are used to compose it, we refer to this form of motion inference as reverse
inference.

The fact that Mc→b is completely defined by Ma→c and Ma→b has the
key advantage that Mc→b always “follows” Ma→b, such that the two motion
fields involved in the prediction of frame fb are geometrically consistent. This
highly desirable property is illustrated in Fig. 4.7. In practice, this means that
the predicted target frame will be significantly less blurred and contain less
ghosting than traditional TFI approaches; examples are provided in Fig. 4.12
and Fig. 4.13.

By and large, the CAW procedure for motion field inference provides an
excellent prediction for the “original” Mc→b field. However, in regions of fc
which correspond to background information that was occluded in fa, the
CAW procedure produces a poor prediction. As we have seen in the previous
section, these disoccluded regions correspond to stretched triangles in frame fc,
where the CAW procedure infers a smooth transition between the background
and foreground motions (see disoccluded regions in Fig. 4.5 and Fig. 4.6 for
examples). For these regions, we propose to use a more realistic motion as-
signment based on piecewise-constant motion extrapolation, which we explain
in the following section.

64



4.3 Reverse Inference of Motion Fields

(a) Accelerating Object (b) Constant Velocity Assumption

(c) Top view of (a) (d) Top view of (b)

Figure 4.7: Illustration of the concept of geometrical consistency. (a/c) show the true
trajectory of the foreground object. (b/d) show how the inferred motion Mc→b follows
the scaled motion Ma→b, which means that they point to the same geometrical location
in the target frame.

4.3.1 Discontinuity-guided Background Motion Extrapolation in
Disoccluding Triangles

The aim of the reverse motion inference process is to obtain a motion field
M̂c→b, anchored at frame fc, and pointing to fb, which is as close to a “true”
motion field as possible. However, the affine interpolated motion assigned by
the CAW procedure in disoccluded regions can hardly be seen as true motion.
In this section, we show how more meaningful motion can be assigned in
regions of disocclusions.

In the absence of new motion appearing in regions that get disoccluded
between frames fa and fc, a good estimate for the motion in such regions can
be obtained by extrapolating the motion of the respective triangle vertices to
motion discontinuity boundaries. For most of the disoccluded triangle, this
means that background motion should be extrapolated; only a small (if any)
part of the triangle covers the foreground object. We use Fig. 4.8 to explain
the details of the proposed background motion extrapolation technique.

Whenever a triangle is stretching as it is mapped from a reference to a
target frame, we expect it to intersect with motion discontinuities in the target
frame; this is because some of its vertices belong to the background (possibly
in motion), and some belong to the (possibly moving) foreground object. In
Fig. 4.8c, D′1 and D′2 belong to the background object, whereas D′3 belongs to
the foreground. The warped triangle has two edges that intersect with motion
discontinuities, which we denote as e1 and e2. As mentioned before, instead
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(a) Reference frame fi (b) Target frame fj

(c) Detail (d) 1D

Figure 4.8: Close-up of the scene in Fig. 4.2, to illustrate the motion extrapolation
technique applied in disoccluded regions. (a) shows a triangle in the reference frame
fi, which straddles a motion discontinuity boundary. (b) shows the warped, stretched
triangle in the target frame fj . Instead of linearly interpolating motion from foreground to
background, we instead extrapolate motion from the vertices to the motion discontinuity
boundary, represented by B1 and B2; this results in sharp boundaries, as exemplified in
(d), where the blue dotted line corresponds to linearly interpolated motion, and the grey
solid line corresponds to extrapolated motion.

of interpolating a value transitioning from background (D′1 in Fig. 4.8) to the
foreground motion D

′
3, we want to extrapolate the background motion up to

the motion boundary; likewise, on the other side of the motion boundary, we
want to extrapolate the foreground motion. To clarify this, we show a 1D cut
along e1, formed by connecting D′1 and D

′
3, of the horizontal component u of

the motion in Fig. 4.8d; the dashed blue line shows the smooth motion assigned
by the CAW procedure, and the gray solid (staircase) shows the background
and foreground extrapolated motion, which contains a sharp discontinuity.

Irrespective of which object each of the three vertices of the triangle belongs
to (foreground or background), the motion extrapolation method performs the
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following procedure: The motion of D′3 is extrapolated in the triangle formed
by D

′
1, B1, and B2. The quadrilateral (D′1, D′2, B1, B2), is broken up into

two triangles (D′1, D′2, B1), and (D′2, B1, B2), and the motion of D′1 and D
′
2

is extrapolated in the respective triangles.

4.4 Bidirectional, Occlusion-Aware TFI (BOA-TFI)

We now evaluate the performance of the proposed motion inversion and motion
inference operations based on the example of TFI. Because of its particular
focus on handling regions around moving objects, we refer to the proposed
TFI scheme as bidirectional, occlusion-aware TFI (BOA-TFI).4 Video resolu-
tion has seen a significant increase in recent years, while the framerate has not
dramatically changed; what this means is that the expected size of disoccluded
regions is larger, which makes appropriate handling of such regions more im-
portant. By contrast, the handling of occluded regions on low-resolution video
(e.g., CIF and lower) is of smaller importance, since they tend to be small.
On such low-resolution sequences, our TFI method performs similarly to ex-
isting TFI methods, and sometimes even worse, because we do not apply any
texture optimizations to our interpolated frames. As part of this thesis, we
want to highlight the importance of better motion and interpolation meth-
ods for high-resolution data; for this reason, all experiments are performed on
high-resolution video sequences.

4.4.1 Method Overview

Guided by Fig. 4.9, we now give an overview of the proposed BOA-TFI
method, for the case of doubling the framerate; we note, however, that the
proposed scheme can readily accommodate frame upsampling factors larger
than 2. We remind the reader that like in all the methods presented in this
thesis, motion fields are anchored at reference frames. Input to the scheme
are two reference frames fa and fc, together with (estimated) motion Ma→c.
Since the scheme requires breakpoints at both reference frames, we further need
Mc→e, i.e., the motion field between the next reference frames. Breakpoint
fields Ba and Bc are estimated on Ma→c and Mc→e, respectively. Breakpoints
at the target frame fb are obtained using the HST-BPI procedure described
in Sect. 4.1.

Next, M̂a→b is obtained by scaling the parent motion field Ma→c by a factor
of 0.5. The backward pointing motion field M̂c→b is obtained from Ma→c and
M̂a→b via the reverse motion inference procedure described in Sect. 4.3. Both

4This work was published in [19, 20].
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Figure 4.9: Overview of the proposed BOA-TFI method. In addition to the two reference
frames fa and fc, the inputs to the scheme are a (potentially estimated) motion field
Ma→c, as well as breakpoint fields estimated on Ma→c for frame fa, and on Mc→e (only
used to obtain breakpoints) for frame fc. In the first step, estimated breakpoints at
reference frames fa and fc (Ba and Bc) are transferred to the target frame fb (Bb).
Next, Ma→b is obtained by halving its parent motion field Ma→c. Ma→c and M̂a→b are
then used to infer the motion field M̂c→b. The last step consists of inverting M̂a→b and
M̂c→b to obtain M̂b→a and M̂b→c. During the motion inversion process, we compute
disocclusion masks Ŝb→a and Ŝb→c, which are used to guide the bidirectional motion-
compensated temporal frame interpolation (MCTFI) process to temporally interpolate
the frame f̂b. Breakpoints are used to resolve double mappings and handle occluded
regions during both the motion inference and inversion process.
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M̂a→b and M̂c→b are then inverted to change the anchoring to the target
frame fb. During this motion inversion process, valuable information about
disoccluded regions is observed (Ŝb→a and Ŝb→c in the figure), which is then
used to guide the bidirectional, occlusion-aware prediction process of the target
frame f̂b. Let fi→j denote the frame obtained by warping the texture of fi to
the target frame fj , using the motion field M̂j→i. At each location m in frame
fb, the prediction f̂b[m] is formed using M̂b→a and M̂b→c, together with the
estimated disocclusion masks Ŝb→a and Ŝb→c, as

f̂b[m] =


Ŝb→a[m]fa→b[m] + Ŝb→c[m]fc→b[m]

κ[m] κ[m] > 0

0.5
(
fa→b[m] + fc→b[m]

)
κ[m] = 0

, (4.12)

where κ([m]) = Ŝb→a[m] + Ŝb→c[m]. Note how (4.12) implies that regions in
f̂b that are disoccluded in both reference frames (i.e., κ = 0), are predicted
from both reference frames equally, where the affine warping process results
in a stretching of the background texture information.

In the next two sections, we evaluate the performance of BOA-TFI on a
variety of challenging synthetic sequences from the Sintel set where ground
truth motion is known, as well as a number of common natural test sequences
with estimated motion.

4.4.2 Evaluation on Synthetic Sequences

The focus of this chapter is on the motion inference process which pro-
duces geometrically consistent interpolated frames. For this to work, we need
piecewise-smooth motion fields with discontinuities at moving object bound-
aries. In this section, in order to focus on the frame interpolation quality
of BOA-TFI, we use challenging synthetic sequences from the Sintel dataset,
where ground truth motion fields between adjacent frames are known. We
provide results on natural sequences with estimated motion in the next sec-
tion.

Figs. 4.10 and 4.11 show example interpolated frames generated by BOA-
TFI; full-resolution versions of the results, including animated versions, can
be found on the website dedicated to the corresponding journal publication
[20].5 Fig. 4.10a/g and Fig. 4.11a/g show the ground truth motion fields,
which contain a variety of types of motion such as translation, rotation, zoom,
and panning; furthermore, the motion magnitudes are much larger than on
most “common” natural sequences, resulting in large regions of disocclusion

5http://ivmp.unsw.edu.au/˜dominicr/atsip_boa_tfi.html
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(a) Bandage 1 M14→15 (b) Estimated disocclusion mask

(c) Crops of M̂14.5→14 (d) Crops of M̂14.5→15

(e) Interpolated unidirectional f̂14.5 (f) Crops of interpolated bidirectional f̂14.5

(g) Cave 4 M4→5 (h) Estimated disocclusion mask

(i) Crops of M̂4.5→4 (j) Crops of M̂4.5→5

(k) Interpolated unidirectional f̂4.5 (l) Crops of interpolated bidirectional f̂4.5

Figure 4.10: First set of TFI results on frames from the Sintel dataset. (a/g) show the
ground truth motion fields; (b/h) show the union of the forward (yellow) and reverse (cyan)
disocclusion masks produced by BOA-TFI; (c/i) and (d/j) show crops of the estimated
motion fields M̂b→a and M̂b→c, respectively, where black regions indicate disoccluded
regions; (e/k) and (f/l) show crops of the TFI results obtained by unidirectional prediction
and the proposed BOA-TFI method, respectively.

70
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(a) Cave 2 M4→5 (b) Estimated disocclusion mask

(c) Crops of M̂4.5→4 (d) Crops of M̂4.5→5

(e) Interpolated unidirectional f̂4.5 (f) Crops of interpolated bidirectional f̂4.5

(g) Bamboo 2 M25→26 (h) Estimated disocclusion mask

(i) Crops of M̂25.5→25 (j) Crops of M̂25.5→26

(k) Interpolated unidirectional f̂25.5 (l) Crops of interpolated bidirectional f̂25.5

Figure 4.11: Second set of TFI results on frames from the Sintel dataset. (a/g) show the
ground truth motion fields; (b/h) show the union of the forward (yellow) and reverse (cyan)
disocclusion masks produced by BOA-TFI; (c/i) and (d/j) show crops of the estimated
motion fields M̂b→a and M̂b→c, respectively, where black regions indicate disoccluded
regions; (e/k) and (f/l) show crops of the TFI results obtained by unidirectional prediction
and the proposed BOA-TFI method, respectively.
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around moving objects, as visualized in the disocclusion masks in Fig. 4.10b/h
and Fig. 4.11b/h. Because the ground truth motion fields for the Sintel se-
quence are only between adjacent frames, the frame we interpolate does not
exist in the sequence, and hence we cannot compute a PSNR. However, what
ultimately counts is the perceived quality, and in particular in scenes with
accelerated motion, PSNR is a poor predictor of perceived quality.

One can see how the scheme is able to create high quality reconstructed
frames. The crops in the third and the last row of Fig. 4.10 and Fig. 4.11
highlight difficult regions around moving object boundaries, where BOA-TFI
switches from bidirectional to unidirectional prediction without smoothing the
texture. Ideally, in the case of upsampling by a factor of 2 under a constant
velocity assumption, as we assume in this experiment, M̂b→a = −M̂b→c. One
can see that this is not always the case, especially in regions of complex mo-
tion and scene geometry, such as the sword in Fig. 4.10i/j, as well as the stick
in Fig. 4.11i/j, which is wrongly assigned background motion in M̂b→c. The
reason for this is that in order to obtain M̂b→c, two motion field inversion
operations have to be performed, which are independent to the inversion re-
quired to obtain M̂b→a. In Chapter 6, we will present a modification of the
motion field anchoring presented here, where only one motion field inversion
has to be performed; as we will see, this will guarantee that M̂b→a = −M̂b→c.

It is worth highlighting that the scheme presented in this chapter does not
perform any texture optimization. In particular, the transition from uni- to
bidirectional prediction can cause artefacts at the transition boundary if there
are significant changes in illumination between the two reference frames. This
can be observed in the right crop of the “Bandage 1” sequence (see Fig. 4.10f),
and is most visible in the upper left part (i.e., the part of the wing which
moves under the hand) which is only predicted from the left reference frame.
The wing is significantly brighter in the left reference frame, and hence the
bidirectionally predicted part of the wing is darker than the unidirectionally
predicted part. In Sect. 6.3, we present ways of selectively optimizing the
texture in such regions, which has a positive impact both on the objective
and subjective quality of the interpolated frames. However, even without any
texture optimizations, BOA-TFI is able to produce high quality interpolated
frames. In the next section, we further provide results on a variety of common
natural test sequences with estimated motion, where we show highly compet-
itive results with state-of-the-art TFI methods.
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Table 4.1: Quantitative comparison of BOA-TFI with [95], [93], and [80], on common
natural test sequences. In parantheses (·), we show the difference between the PSNR
of the proposed BOA-TFI method and the respective method we compare it to; “-”
means that the proposed BOA-TFI performs better, “+” means worse performance.
Bold indicates best per-row performance.

Sequence Jeong [95] Veselov [93] Lu [80] BOA-TFI†

Cactus 33.15 (-0.49) 31.27 (-2.36) 34.12 (+0.49) 33.63
Kimono1 33.93 (+0.68) 33.40 (+0.14) 34.51 (+1.25) 33.26
Kimono2 39.97 (-0.98) 40.21 (-0.73) 39.51 (-1.43) 40.94
Rushhour 35.18 (+0.42) 34.93 (+0.17) 35.30 (+0.55) 34.76
Shields1 35.90 (-0.66) 35.10 (-1.45) 35.89 (-0.66) 36.55
Shields2 33.87 (-3.89) 35.58 (-2.18) 33.52 (-4.24) 37.76
Stockholm 36.59 (-1.25) 37.12 (-0.72) 35.85 (-1.99) 37.84
Park 38.29 (-1.22) 38.84 (-0.67) 38.74 (-0.77) 39.51
Parkrun 30.63 (-1.17) 30.97 (-0.82) 30.50 (-1.29) 31.79
Station2 41.10 (-2.51) 41.41 (-2.21) 40.54 (-3.08) 43.61
Mobcal 29.13 (-8.68) 34.75 (-3.06) 29.53 (-8.28) 37.81
Terrace 33.29 (-4.34) 34.22 (-3.40) 33.66 (-3.96) 37.62

Average 35.08 (-2.01) 35.65 (-1.44) 35.14 (-1.95) 37.09
† Motion fields estimated using MDP [85].

4.4.3 Evaluation on Natural Sequences

In this section, we show results obtained on common natural test sequences;
for the proposed BOA-TFI, motion fields are estimated using the optical flow
estimator proposed by Xu et al. [85]. We compare our results to three state-
of-the-art TFI methods, which have been reviewed in Sect. 3.2. Here, we
simply remind the reader that [95] is a sophisticated multi-hypothesis testing
framework, where a lot of effort is spent on texture optimization. [93] focuses
on estimating high-quality motion fields, which are then used without any
sophisticated texture optimization to interpolate the target frame. [80] is a
block-based scheme that explicitly detects and handles occluded regions, and
uses a modified OBMC scheme to generate the interpolated frames.

We selected 12 sets of various common high-resolution test sequences with
a large variety of motion and texture complexity; in Sect. A.3, we show the first
frame of each sequence. Note that both the Kimono and the Shields sequence
contain a scene cut, with very different motion on each side of the scene cut; we
split these sequences into two parts, and consider them as separate sequences
(Kimono1/2 and Shields1/2). For each such sequence, we choose 11 adjacent
even numbered frames, and interpolate the odd numbered frames in between
them; this results in 10 interpolated frames per sequence, for a total of 120
interpolated frames. Table 4.1 presents the per sequence results, averaged over
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(a) Parkrun f151 (b) Ground truth Parkrun f151

(c) BOA-TFI Parkrun f̂151 (d) Veselov et al. [93] Parkrun f̂151

(e) Jeong et al. [95] Parkrun f̂151 (f) Lu et al. [80] Parkrun f̂151

Figure 4.12: Qualitative comparison of the proposed BOA-TFI scheme with state-of-
the-art TFI methods on a frame of the “Parkrun” sequence. (a) shows the ground truth
frame; (b-f) show crops of the ground truth, as well as interpolated frames produced by
BOA-TFI [20], Veselov et al. [93], Jeong et al. [95], and Lu et al. [80], respectively.

the 10 frames, as well as the performance average over all interpolated frames.
While the reporting of average PSNR values provides a compact way of

summarizing the performance of the tested methods, we note that this mea-
sure only makes sense in regions where there is no acceleration between the
two reference frames. Ultimately, it is the perceived visual quality that is im-
portant. We therefore provide qualitative results for two of the sequences in
Fig. 4.12 and Fig. 4.13. First off, all three TFI methods chosen for comparison
are able to provide high quality interpolated frames for most of the sequences,
in particular in regions within moving objects (i.e., away from moving object
boundaries). The differences in PSNR values and visual quality are governed
by two major factors:
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4.4 Bidirectional, Occlusion-Aware TFI (BOA-TFI)

(a) Cactus f19 (b) Ground truth Cactus f19

(c) BOA-TFI Cactus f̂19 (d) Veselov et al. [93] Cactus f̂19

(e) Jeong et al. [95] Cactus f̂19 (f) Lu et al. [80] Cactus f̂19

Figure 4.13: Qualitative comparison of the proposed BOA-TFI scheme with state-of-
the-art TFI methods on a frame of the “Cactus” sequence. (a) shows the ground truth
frame; (b-f) show crops of the ground truth, as well as interpolated frames produced by
BOA-TFI [20], Veselov et al. [93], Jeong et al. [95], and Lu et al. [80], respectively.

How regions of global motion are interpolated Block-based methods usu-
ally employ a variant of OBMC, which tends to oversmooth the interpolated
frames, resulting in significant blurring of the overall texture. In Fig. 4.12, this
can be seen in highly textured regions such as the running man with the um-
brella, as well as the text on the card of the Cactus sequence in Fig. 4.13. Lu
et al.’s method [80] seems to be particularly affected by this, which can explain
the significant drop in PSNR this method exhibits in some of the sequences
reported in Table 4.1.

Occlusion-Handling Regions around moving objects are only visible from
one reference frame, and hence should only be predicted from the frame in
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which they are visible. A proper occlusion handling can only be achieved if
such regions are detected by the TFI algorithm. Of the three TFI schemes
tested, only Lu et al. [80] explicitly handles occluded regions. The quality
of the proposed occlusion handling is most visible in the “Parkrun” sequence
around the left leg of the running man, where all other methods resort to frame
averaging, while BOA-TFI creates a credible interpolation of the leg without
any ghosting. On the “Cactus” sequence, the “10” (cyan crop) is properly
interpolated by the proposed method.

In the current implementation of the proposed method, we do not perform
any texture optimization. In regions which are highly affected by motion
blur, such as the tiger in the “Cactus” sequence, this can create artificial high
frequencies around moving object boundaries. As we will show in Sect. 6.3,
the above-mentioned problems can be addressed in quite an elegant way by
selectively smoothing the prediction in regions where there is a transition from
uni- to bidirectional prediction.

4.5 Chapter Summary

In this chapter, we presented the two main motion field operations that will
be used throughout this thesis. First, we proposed motion discontinuity aided
motion inversion operation, which can be used to map motion fields from one
frame to another. A key insight is that this motion field inversion process
allows us to readily observe regions that get disoccluded in the target frame.
Disoccluded regions are regions that are not visible in the respective refer-
ence frame. However, it is quite likely that such regions are visible in another
reference frame. The second operation on motion fields, which we refer to
as motion inference, is used to compose a motion field that relates the other
reference frame with the target frame in a geometrically consistent way. Per-
haps surprisingly, this “backward” pointing motion field is inferred from two
forward pointing motion fields. The two motion field operations are evaluated
in a TFI scenario on a large variety of both challenging synthetic sequences,
as well as common natural sequences, where we show superior performance
compared to three state-of-the-art TFI schemes.

The motion centric approach to TFI is well adapted to scalable compres-
sion schemes, since it allows the motion to be understood as part of a transform
that is applied to the frame data; the proposed TFI scheme can then be un-
derstood as the inverse transform that would result if high temporal frequency
details were omitted. In the next chapter, we present a highly scalable video
compression scheme which has BOA-TFI as the main building block.
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5 Bidirectional Hierarchical
Anchoring (BIHA) of Motion

In the previous chapter, we introduced two motion field operations that can be
used to perform a bidirectional interpolation of a target frame from only two
reference frames, together with the motion linking the reference frames; we
refer to this scheme as BOA-TFI. In this chapter, we propose a bidirectional
hierarchical anchoring (BIHA) of motion for highly scalable video compres-
sion, which employs BOA-TFI as a fundamental building block.1 In Sect. 5.1,
we present the BIHA scheme, and contrast it with the conventional anchor-
ing of motion at target frames, as employed by all standardized video codecs.
In Sect. 5.2, we detail the modifications to the motion-compensated tempo-
ral filtering (MCTF) process; in particular, we add an update step, which is
beneficial in a video compression scenario.

The utility of the proposed scheme increases with the number of temporal
decompositions. Sect. 5.3 presents how to scalably allocate the rate for all the
different spatio-temporal subbands of texture, motion, and breakpoints. To
further improve the R-D performance of the proposed highly scalable video
compression scheme, we present in Sect. 5.4 an extension to the temporal
breakpoint warping procedure (see Sect. 4.1); the resulting HST-BPI can ac-
count for the presence of partial breakpoint fields at target frames, and proves
particularly useful at medium to low bit-rates. In Sect. 5.5, we compare the R-
D performance of the BIHA scheme with the traditional motion field anchoring
at target frames. We further show comparisons with SHVC, the latest stan-
dardized scalable video codec, where the proposed scheme shows promising
results.

5.1 BIHA of Motion Fields for Highly Scalable Video
Compression

Current state-of-the-art codecs (e.g., H.264/AVC [4], HEVC [5], including their
scalable extensions), anchor motion fields at the (odd indexed) target frames

1We presented the initial idea of this work in [18] and [21], which was extended with an
analytical model for the scalable rate allocation as well as more comprehensive evaluation in
[23].
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(a) Traditional anchoring of motion fields at target frames.

(b) Proposed anchoring of motion fields at the reference frames.

Figure 5.1: Two ways of anchoring motion fields in a temporal hierarchy. We use f (t)
k

to indicate the kth frame at level t of the temporal hierarchy. ↓ ×0.5/(−1) indicates the
scaling factor applied between motion fields. (a) Traditional anchoring as used in current
video compression schemes, where the motion description is attached to the frame that
is to be predicted; (b) The proposed bidirectional hierarchical anchoring (BIHA), where
motion is described at reference frames instead, which are then mapped to the target
frames in order to serve as prediction references. Each arrow indicates a coded motion
field; solid black arrows are fully coded motion fields, dotted blue are scaled motion
fields, and dashed orange arrows indicate inferred motion fields. One can see that in the
traditional anchoring, motion information is only used for the prediction of one frame,
whereas in the proposed BIHA scheme, motion information can be scaled (blue arrows)
from coarse to fine temporal levels, which is highly beneficial for scalable compression
systems. In addition, roughly half the motion fields in the BIHA scheme are inferred,
which, as we shall see, are very cheap to code.

of the temporal transform’s prediction step; we refer to this as the traditional
anchoring scheme. In this chapter, we flip the motion field anchoring and
instead hierarchically anchor motion fields at the (even indexed) reference
frames, which we refer to as bidirectional hierarchical anchoring (BIHA). As
we shall see later, this has some major advantages over the traditional motion
field anchoring scheme. Fig. 5.1 shows the traditional and the proposed BIHA
schemes for T = 3 temporal transform levels.

Note that the BIHA scheme requires the inversion of motion fields so that
they can be used for temporal prediction of the target frames, as described
in Sect. 4.2 of the previous chapter. To facilitate the discussion, we label the
frames and motion fields involved in the bidirectional prediction process at any
given temporal level t as shown in Fig. 5.2. In the BIHA scheme, there are two
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(a) Traditional anchoring (b) BIHA configuration 1 (c) BIHA configuration 2

Figure 5.2: Frame naming conventions used in the discussion. The target frame (in the
middle) is predicted from its temporal left and right neighbour. (a) shows the traditional
anchoring; (b) and (c) show the two configurations that arise in the BIHA scheme, which
depend on the index of the target frame.

different arrangements of frames (Fig. 5.2b/c), depending on the index of the
target frame. In Fig. 5.2b, one can identify the same motion field arrangement
as the one used in BOA-TFI presented in Sect. 4.4. In fact, apart from the
temporal hierarchical structure of the BIHA scheme, the main difference is
that in a (scalable) coding scenario, the target frame fb is known; furthermore,
Ma→b and Mc→b can be estimated, so that they can account for acceleration.
Besides this, the proposed highly scalable video compression scheme using
BIHA motion employs the same operations as BOA-TFI to predict target
frames.

In the following, we provide more insight into the aspects that are partic-
ular to a coding environment, and highlight the benefits of BIHA compared
to the traditional anchoring of motion at target frames.

5.1.1 A Hierarchy of Scaled and Inferred Motion Fields

Both the traditional and proposed schemes involve a full motion field that is
either independently coded, or differentially coded at a coarser temporal level.
We use the terms scaled and inferred to refer to motion fields that serve as
prediction references for motion field coding within the temporal hierarchy. In
the proposed approach, the motion vectors of each motion field found at level t
in the hierarchy are scaled by 1

2 to form prediction references for a motion field
at the next finer level t + 1. Scaled prediction references are also commonly
used in the traditional motion anchoring approach, where the motion vectors
of each reverse pointing motion field are scaled by −1 to serve as a prediction
for the forward pointing motion field anchored at the same frame. The scaled
motion fields are shown as dotted blue lines in Figs. 5.1 and 5.2. As prediction
references, these scaled motion fields can be expected to be most efficient under
constant (non-accelerated) motion.

In the proposed scheme, roughly half of all motion fields are inferred
(dashed orange arrows in Fig. 5.1b); they are specific to our proposed hi-
erarchical motion anchoring scheme, being obtained through composition and

79



Chapter 5. Bidirectional Hierarchical Anchoring (BIHA) of Motion

inversion of other motion fields at the same and coarser levels of the hier-
archy (see Sect. 4.3). Importantly, the inferred motion fields can be highly
effective in predicting actual motion, even under accelerating conditions, since
they “follow” their scaled temporal sibling motion field. In the next section,
we discuss the potential of motion field inference in the traditional anchoring
scheme.

5.1.2 Potential for Motion Inference in the Traditional Anchoring
Scheme

As a prediction tool, the inferred motion fields we compose in the proposed
scheme are very appealing since they are very sparse – the prediction residual
of inferred motion fields can be expected to be non-zero only in disoccluded
regions. In this chapter, motion field inference is developed entirely for the
proposed scheme. It is reasonable to ask whether the traditional scheme could
potentially benefit from a similar approach.

As we shall see, the proposed approach makes it possible not only to infer
motion fields, but also to deduce regions of disocclusion, where information
in the target frame is not observable in one of the source frames. Without
some form of explicit encoding, it is not clear how such information can be
deduced in the traditional approach with target-frame anchored motion. It
is important to note that it is not possible to have both scaled and inferred
motion fields in the traditional scheme. Motion field scaling is a simple and
effective mechanism to generate a prediction reference from another motion
field that is anchored at the same frame. In the traditional approach, mo-
tion fields are anchored at the target frames, so that with the terminology of
Fig. 5.2a, scaling can only be used to predict Ma→b from Ma→c or vice-versa.

Motion field inference could be used with the traditional anchoring scheme.
In particular, with the terminology of Fig. 5.2a, Ma→b could be inferred from
Ma→c and a coarser level motion field, or Ma→c could be inferred from Ma→b

and a coarser level motion field, both of which are alternatives to motion
scaling, but not complementary. Of course, to do this, the coarser level motion
fields would also need to be encoded. The proposed approach has the benefit
that scaling provides a robust motion prediction mechanism from coarse to
fine levels, which is complemented by inference of the remaining finer level
motion information, so that motion information need only be coded directly
at the very coarsest level of the temporal hierarchy. Regardless of employing
motion scaling or inference, the traditional anchoring requires one fully coded
motion field (Fig. 5.1a) for each target frame; in contrast, there is only one
fully coded motion field in the BIHA scheme (Fig. 5.1b).
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5.1.3 Differential Coding of Motion Fields

In a coding scheme, the scaled and inferred motion fields serve as references
M̂j→i for predictive coding of the actual motion field Mj→i,

∆Mj→i = Mj→i − M̂j→i. (5.1)

Clearly, the quality of these scaled and inferred prediction references has a
large impact on the motion coding cost. For scaled motion fields, the scaled
motion residual ∆Mj→i represents the acceleration between the three frames
involved; inferred motion residuals, however, are expected to be non-zero only
in regions that get disoccluded between frames fa and fc. The more temporal
levels there are, the more efficient the scheme becomes, since the scaled and
inferred residuals can be expected to become smaller at finer temporal levels.
We use the term “highly” scalable to highlight the fact that the number of
scalability levels does not need to be decided upon at the encoder. Further-
more, as presented in the last chapter, the proposed scheme is able to produce
highly credible frames if all information at a given temporal level is quantized
to zero, where it performs “intrisic upsampling”.

5.1.4 Geometrical Consistency with Quantized Motion Fields

As bits are discarded from a scalable bit-stream, small prediction residuals
in ∆Mj→i will be quantized to zero, so that the motion obtained by the scal-
ing and inference algorithms comes to dominate the visual properties of the
reconstructed video. The proposed anchoring of motion fields at reference
frames might appear counter-intuitive, because all motion fields have to be
transferred to the target frames before motion-compensated prediction can
be performed. One key insight of the proposed scheme is that because the
inferred motion fields “follow” their scaled temporal sibling motion fields, the
warped (inverse) motion fields, which are anchored at the target frame and
used for the prediction of the target frame fb, lead to geometrically consistent
predictions, as shown in Fig. 5.3.

By contrast, in the case of the traditional anchoring, nothing guarantees
that the forward and backward pointing motion fields point to the same ge-
ometrical location in the reference frames once the motion gets quantized,
which leads to ghosting artefacts.
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(a) BIHA no quantization (b) Traditional anchoring no quantization

(c) BIHA quantized motion (d) Traditional anchoring quantized motion

Figure 5.3: Illustration of how quantization of motion fields affects the motion-
compensated prediction process. (a/c) In the proposed BIHA scheme, the inferred motion
field Mc→b “follows” whatever error there is in the scaled motion field Ma→b. In contrast,
(b/d) shows how in the traditional anchoring, the forward and backward pointing motion
points to different geometrical locations, which leads to ghosting if the motion is quan-
tized. This arises because Ma→b and Ma→c are not linked in the traditional anchoring.

5.1.5 A Few Notes on Complexity

In addition to traditional MCTF as found in most video coders, the BIHA
framework involves the following two main steps:

1. Transferring breakpoints from reference to target frames;

2. Transferring motion fields from one frame to another.

The proposed method is based on the fact that the underlying motion of a
scene can be represented as being piecewise-smooth, with sharp transitions at
motion field boundaries. For such motion fields, breakpoints can be expected
to be sparse; since the complexity of the breakpoint warping procedure is lin-
ear in the number of breakpoints, the computational overhead of transferring
breakpoints can be expected to be relatively low.

The core of both motion inversion and motion inference is the CAW pro-
cedure, which maps motion fields from one frame to another. For both the
horizontal and vertical motion component, the complexity of this motion map-
ping is similar to the one of MCTF. For the experiments in this chapter, we
used a fixed cell size of 1 × 1 pixels; hence, there are roughly twice as many
triangular cells as there are pixels in the video. As mentioned earlier, we
present a way of forming a mesh with adaptive triangle size in Sect. 7.2; here,
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we outline the main ideas of such a procedure and its consequences in a coding
environment. Similar to the quadtree structure employed in modern hybrid
video coders, the adaptive mesh implementation uses a hierarchical cell struc-
ture. Whenever a cell contains a nonzero motion wavelet coefficient, it is split
up into 4 smaller cells, until the (sub)cell is smooth. If we let the maximum cell
size be 32× 32, then in the worst case, one nonzero wavelet coefficient creates
5 × 4 cells. Normally, such nonzero wavelet coefficients are grouped together
around moving object boundaries, and multiple coefficients cause the same cell
to be further partitioned. In the case of a truly isolated motion coefficient, the
associated coding cost can be expected to be high. Assuming 10 bits to code
this motion coefficient, the maximum number of partitioned cells per coded
motion bit would be 5×4

10 = 2. The number of cells Nc to be expected is thus
linked to the motion bit-rate rm; in practice, we expect Nc � rm × 2. Even
this conservative bound suggests typical cell sizes to involve many pixels at
reasonable motion bit-rates.

5.2 Motion-Compensated Temporal Filtering

For the coding part, we assume the use of a 5/3 temporal wavelet decomposi-
tion, based on motion-compensated lifting steps. At any given temporal level
in this transform, the odd indexed frames are predicted using the preceding
and succeeding even indexed frames, while even indexed frames are updated
using the prediction residuals from their even indexed temporal neighbours.
The even indexed frames are interpreted as a low-pass temporal subband and
the procedure is recursively applied to this subband for a total T levels. This
transform is common in the literature [106].

Both original and inverted motion fields are used together with discovered
information about disoccluded regions, to drive a motion compensated tempo-
ral lifting transform of the video texture information. The temporal transform
employed in this work is composed of two parts:

1. Bidirectional prediction of the target frame from its temporal neighbours;

2. A temporal update step, which feeds some of the motion compensated
residual from the prediction step back to the reference frames.

The update step is specific to a compression scheme, and helps reduce temporal
aliasing in case finer temporal levels are discarded from the bit-stream; it also
has fundamental benefits in reducing the impact of quantization noise in the
temporal subbands on reconstructed video quality [107].
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In the proposed framework, the prediction step uses inverted motion fields,
while the update step uses the original (encoded) motion fields. This differs
markedly from traditional approaches, where bidirectional prediction is per-
formed using original motion fields. However, the proposed approach has the
advantage that disocclusion information, discovered during the inversion pro-
cess, can inform the prediction process, as discussed in Sect. 4.2.1. In the
following, we use the notation for disocclusion masks introduced in (4.5).

In the BIHA scheme, we compute two such disocclusion masks: one during
the inversion of Ma→b, and the other one while inverting Mc→b. These masks
are denoted Ŝb→a and Ŝb→c, respectively.

5.2.1 Prediction Step

The inverted motion fields M̂b→a and M̂b→c are used to warp the texture from
the reference frames fa and fc, respectively, to the target frame fb; we use
fi→j to denote the frame obtained by warping the texture of frame fi to frame
fj . Then, each (integer) location m in frame fb is bidirectionally predicted as

f̂b[m] =


Ŝb→a[m]fa→b[m] + Ŝb→c[m]fc→b[m]

κ[m] κ[m] > 0

0.5
(
fa→b[m] + fc→b[m]

)
κ[m] = 0

, (5.2)

where κ[m] = Ŝb→a[m] + Ŝb→c[m]. The prediction residual ∆fb that needs to
be coded is

∆fb = fb − f̂b, (5.3)

which is also the high-pass temporal subband.

5.2.2 Update Step

Motion fields are invertible everywhere except in disoccluded regions. We use
the disocclusion masks Ŝb→j , where j ∈ {a, c} are the previous and future
reference frames, to disable the update step in disoccluded regions. Defining
the update weight β as

β =

 0.25 κ(x) = 2

0.5 κ(x) < 2
, (5.4)

the updated frame becomes

fupdated
j (m + M̂b→j [m]) = fj(m + M̂b→j [m]) + βŜb→j [m]∆fbb→j [m]. (5.5)
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We remind the reader that we use (·) and [·] to differentiate between a contin-
uous and an integer location, respectively. While the update step is performed
for all integer locations m in the prediction residual ∆fb of the target frame,
the update is fed back using motion M̂b→j , which normally does not fall onto
integer locations in the reference frame fj . We use a bilinear weighting to
proportionally assign the prediction residual to its closest neighbours on the
integer grid of the respective reference frame.

(5.4) and (5.5) imply that a quarter of the prediction residual is fed back
to the two reference frames in regions that are visible from both references. If
a location is only visible from one side, the temporal transform is effectively
reduced from the 5/3 temporal wavelet transform to a 2-tap Haar transform. If
a region is disoccluded in both frames, (5.5) eliminates the update step; in such
regions the prediction step in (5.2) averages two spatially smooth predictors.

5.3 Scalable Rate Allocation

In order to quantitatively evaluate the proposed anchoring and compare it
to the traditional anchoring of motion fields, we have to code the texture,
motion, and breakpoint data. For this evaluation to be meaningful, we need
to balance the error contributions of the different data types, which requires
an understanding on how errors propagate. In the following, we present an
analytical model that allows us to understand how quantization errors in the
motion field subbands impact distortion in the final reconstructed video se-
quence. We then consider the impact of errors in the texture and breakpoint
information in Sect. 5.3.2.

5.3.1 Motion Error

We first investigate how a quantization error of δ propagates across frames
for the different types of motion fields. Let f (t) denote the frames produced
after T − t levels of temporal synthesis. For any level t ∈ [0, T − 1] of the
temporal transform, motion fields {M (t)

i→j} are used to synthesize frames f (t)

from frames f (t+1) together with high-pass temporal subband frames d(t+1).
For any level t, the reconstructed frames at the finest temporal level can

always be expressed as

f (0) = S
(t+1)
L (f (t+1)) +

t+1∑
p=1

S
(p)
H (d(p)), (5.6)

where SpL(·) and SpH(·) denote low- and high-pass temporal synthesis operators
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associated with the information injected at level p in the transform.
For convenience of analysis, consider for the moment that there is a con-

stant displacement error δ in M
(t)
i→j . Our goal is to understand the impact

of this error on the total squared error distortion in the reconstructed video.
This reconstructed video distortion arises from geometric distortions (i.e., spa-
tial shifts) in each of the synthesized texture contributions found in (5.6). In
particular, the synthesis operators S(p)

L and S
(p)
H , p ≤ t + 1 each depend on

M
(t)
i→j and hence on the error δ, so that the total error experienced from all

frames at the finest temporal level becomes

∆f (0) = D
(t+1)
L (f (t+1), δ) +

t+1∑
p=1

D
(p)
H (d(p), δ). (5.7)

While it is possible to analyze each of these contributions separately, it
turns out that the major contribution to ∆f (0) arises from the first term
D

(t+1)
L (f (t+1), δ), corresponding to distortion arising for the low-pass synthe-

sis operation. In the following analysis, we therefore assume that all detail
bands d(p) are zero. In order to simplify the ensuing analysis, we consider
only the case where the original motion is 0, so that the error δ becomes the
distorted motion field. The resulting analysis remains valid for any transla-
tional original motion field, and is an excellent approximation for more general
original motion fields.

Fig. 5.4 shows the effect of an error δ in any level t scaled, inferred or full
motion fields found between frames f (t+1)

k and f
(t+1)
k+1 . The second row in the

figure shows how the texture contributions from these left (dashed line) and
right (solid line) reference frames become shifted by the time they reach the
finest temporal level f (0). Fig. 5.4d shows the relative contribution from each
of f (t+1)

k and f
(t+1)
k+1 to each frame of the final synthesized video sequence.

In the following, we provide an asymptotic analysis of the impact of δ in
the limit as t becomes very large so that the synthesized video can be treated
as continuous in time. As revealed by Fig. 5.4, the motion errors in question
result in shifted contributions that can produce reconstructed video errors
only at frame times (k + τ)2t+1, where τ ∈ [0, 1]. We can express these error
frames in terms of their contributions from the left and right reference frames
as ∆f (0)

τ = ∆f (0)
left,τ + ∆f (0)

right,τ .

5.3.1.1 Scaled Motion Fields

The scaled motion field M
(t)
2k→2k+1, shown as a solid blue arrow in Fig. 5.4a,

has motion vectors u2k→2k+1(x)(t). Introducing an error of δ to these motion
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(a) Scaled motion (b) Inferred motion (c) Fully coded motion

(d) Prediction Weights

Figure 5.4: Illustration how errors in motion fields spread in the temporal transform for
(a) scaled, (b) inferred, and (c) fully coded motion fields. The solid red line shows how
the texture data from the right reference frame is affected by introducing an error δ into
a motion field; the dashed red line shows the same for the left reference frame. (d) shows
the prediction weight of the two reference frames.

vectors yields an error contribution ∆fleft,τ that can be expressed in the Fourier
domain as

∆f̂left,τ (ω) = f̂(ω)
(
1− e−jωtδ2τ )(1− τ), (5.8)

over the interval τ ∈ [0, 0.5]. Here, f̂(ω) is the Fourier transform of f (t+1)
k ,

which is identical to f
(t+1)
k+1 under our zero original motion assumption. As

shown in Fig. 5.4a, the same shifts arise in the contribution from f
(t+1)
k+1 due

to the motion inference process. Accordingly,

∆f̂right,τ (ω) = f̂(ω)
(
1− e−jωtδ2τ )τ. (5.9)

Thus, for τ ∈ [0, 0.5], the total error at frame f (0)
τ can be expressed as

∆f̂τ (ω) = f̂(ω)
(
1− e−jωtδ2τ ) ≈ f̂(ω)2τjωtδ, (5.10)

where we have used a first order Taylor series approximation for the complex
exponential.

Evidently, the errors ∆f̂τ (ω) that arise when τ ∈ [0.5, 1] are just a mirror
image of those that arise when τ ∈ [0, 0.5]. Using Parseval’s theorem, the total
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energy of the prediction error |e∞scal|2 can then be expressed as

|e∞scal|2 = 2t+1 · 2
0.5∫
0

1
(2π)2

π∫
−π

π∫
−π

|∆f̂τ (ω)|2dτdω (5.11)

where the factor of 2t+1 arises from the observation that our interval τ ∈ [0, 1]
corresponds to 2t+1 reconstructed video frames. This error energy (distortion)
can be approximated by

|e∞scal|2 ≈ 2t+4
0.5∫
0

τ2dτ |δ|2 1
(2π)2

π∫
−π

π∫
−π

|f̂(ω)|2|ω|2 cos2(Θ)dω

︸ ︷︷ ︸
= 1

2E[|∇f |2]A (assuming isotropic power spectrum)

= 2t

3 E[|∇f |2]A|δ|2,

(5.12)

where E[|∇f |2] is the average gradient power, and A is the area of the
frame. Let Dscal

u(t) denote the total amount of distortion in scaled motion fields
at temporal level t. The resulting total amount of distortion in the recon-
structed video can then be expressed as

Dscal
u(t)→f0

= Dscal
u(t)

2t

3 E[|∇f |2] = Dscal
u(t) · α(t)

scal · E[|∇f |2]. (5.13)

While the model we present assumes a constant error δ, we note that it
provides a good approximation also for gradually changing errors. We do not
specifically consider high frequency motion errors, but note that the sparse
motion representation required for good coding efficiency inevitably leads to
motion fields (and hence motion quantization errors) that are smooth except
in the vicinity of breakpoints.

5.3.1.2 Inferred Motion Fields

The inferred motion field M
(t)
2k+2→2k+1, shown as a solid orange arrow in

Fig. 5.4b, has motion vectors u2k+2→2k+1(x)(t). Errors in these motion vectors
do not affect the scaled sibling motion field M

(t)
2k→2k+1. This can be seen in

Fig. 5.4b, where the dashed red line, indicating the shift in the texture of the
left reference frame, is zero over the first half interval τ ∈ [0, 0.5]. Over this
half interval, f̂τ can be expressed in the Fourier domain as

∆f̂τ (ω) = f̂(ω)
(
1− (1− τ)− τe−jωtδ

)
≈ f̂(ω)τjωtδ. (5.14)
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For τ ∈ [0.5, 1], the expression is

∆f̂τ (ω) = f̂(ω)
(
1− (1− τ)ejωtδ(2τ−1) − τejωtδ(2τ−2))

≈ f̂(ω)(τ − 1)jωtδ.
(5.15)

Again, using Parseval’s Theorem, the sum of squared errors can be written
as

|e∞inf|2 ≈
1
2E[|∇f |2]A2t+1|δ|2

( 0.5∫
0

τ2dτ +
1∫

0.5

(τ − 1)2dτ
)

= 2t

12E[|∇f |2]A|δ|2.

(5.16)

Let Dinf
u(t) denote the total amount of distortion in inferred motion fields at

temporal level t. The resulting total amount of distortion in the reconstructed
video can then be expressed as

Dinf
u(t)→f0

= Dinf
u(t)

2t

12E[|∇f |2] = Dinf
u(t) · α(t)

inf · E[|∇f |2]. (5.17)

5.3.1.3 Full Motion Fields

At the coarsest level of the temporal hierarchy, where t = T − 1, the pro-
posed method involves one full motion field M

(T )
k→k+1, with motion vectors

uk→k+1(x)(T ), as shown in Fig. 5.4c. Full motion fields are never used to di-
rectly predict their target frame, but all lower level motion fields depend upon
them. An error of δ in a full motion field leads to error contributions

∆f̂left,τ (ω) = (1− τ)f̂(ω)
(
1− e−jωtδτ

)
∆f̂right,τ (ω) = τ f̂(ω)

(
1− e−jωtδ(τ−1)) (5.18)

Each term alone is a stretched version of the corresponding term that we stud-
ied in connection with scaled motion fields. Indeed, if we consider only the
left or right error contribution in isolation, the total squared error associated
with such a contribution turns out to be the same for both full motion field
errors and scaled motion field errors at level t = T − 1. However, the left and
right error contributions from an error in the full motion field approximately
cancel each other out. This is because geometric shifts in the left contribu-
tion are matched by opposing shifts in the right contribution, as seen in the
second row of Fig. 5.4c. It follows that full motion field errors produce signifi-
cantly smaller levels of reconstructed video distortion than errors in the scaled
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Table 5.1: Squared errors for different temporal texture and motion subbands for a total
of T = 4 temporal decompositions.

t α
(t)
text α

(t)
scal α

(t)
inf α

(t)
full

0 0.719 0.5 0.125 –
1 0.922 0.75 0.1875 –
2 1.586 1.375 0.34375 –
3 3.043 2.6875 0.671875 –
4 – – – 2.6875

motion fields. However, the divergent shifts induced in the left and right ref-
erence frame contributions to f (0) yield substantial levels of “ghosting.” By
contrast, distortions introduced by errors in scaled motion fields are free from
such visually disturbing ghosting artefacts. It would be beneficial to adopt
a distortion metric which could specifically account for the objectionable na-
ture of ghosting artefacts; however, the development of such a metric would
require subjective evaluations that lie beyond the scope of this thesis. As a
compromise, therefore, we choose to assign the same weighting factor to both
scaled and full motion fields, i.e., α(T )

full = α
(T−1)
scal , leaving us with the model

Dfull
u(T )→f0

= Dfull
u(T ) · α(T )

full · E[|∇f |2]. (5.19)

5.3.1.4 Distortion Scaling Factors for the Discrete Case

The asymptotic analysis above unveils the coupling between motion errors
and reconstructed video errors for the proposed motion representation. For
small t, where very few video frames lie in the interval [k · 2t+1, (k+ 1) · 2t+1],
this continuous analysis is only approximately valid. Actual coupling factors
are shown in Table 5.1 for T = 4 levels of temporal decomposition. Squared
quantization errors in individual subbands b of the breakpoint-adaptive spatial
wavelet transform that is used to compress motion fields of type “mtyp” are
scaled by the overall weighting factor

w
(t,b)
mtyp = α

(t)
mtyp · E[|∇f |2] ·G(b)

mdwt (5.20)

in order to discover their impact on reconstructed video distortion; here G(b)
mdwt

is the squared Euclidean norm of the spatial DWT synthesis basis functions
associated with motion subband b.
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5.3.2 Rate Allocation with Breakpoint and Texture Errors

Breakpoints and motion are tightly linked, and hence the analysis for errors
introduced by quantizing breakpoints is similar to the one presented above.
More details can be found in [15]. As we will see in Sect. 5.4.1, this approxi-
mation leads to a very good performance.

The temporal texture subbands produced by our motion adaptive temporal
transform are also subjected to a spatial DWT, whose subband samples are
subject to quantization errors. The impact of squared subband quantization
errors on distortion in the reconstructed video sequence can be modelled using
a separate set of weighting factors

w
(t,b)
text = α

(t)
textG

(b)
tdwt (5.21)

where G(b)
tdwt is the squared Euclidean norm of the spatial DWT synthesis basis

functions associated with texture subband b, and α(t)
text is the squared Euclidean

norm of the temporal synthesis basis functions associated with temporal sub-
bands at level t.

Together, these weights are used to drive a rate-distortion optimized rate
allocation algorithm. In practice, the rate allocation is performed using the
post compression rate-distortion (PCRD) strategy of JPEG2000’s EBCOT al-
gorithm [38]. That is, each of the individual subbands and breakpoint vertex
bands are subjected to embedded block-based coding, collecting distortion-
length slopes for each coding pass, after which the block coding passes are
arranged into a global set of quality layers based on the distortion-length
slopes, weighted using the factors found above. The resulting scalable video
bit-stream can be reconstructed at any of the rate-distortion optimal operating
points obtained by discarding quality layers from the overall representation.

5.4 Hierarchical, Spatio-Temporal Induction of Discon-
tinuity Information

In Sect. 4.1, we presented a temporal breakpoint induction method, which is
used to transfer breaks from one frame to another. In the case of temporal
frame interpolation (TFI), by definition, there is no information present at the
target frame; in particular, there is no motion discontinuity information. In
this section, we augment the temporal breakpoint induction to a hierarchical
spatio-temporal breakpoint induction (HST-BPI) method to account for coded
spatial breaks.

A natural outcome of the proposed hierarchical coding framework is that
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Figure 5.5: Hierarchical, spatio-temporal induction of breakpoints (HST-BPI). Going
from coarse to fine spatial resolution, the proposed method consists of three steps at each
resolution level η: (1) Assessment of temporal compatibility of line segments induced by
breakpoints between two coarse-level frames fa and fc; (2) Warping of compatible line
segments to fb; (3) Spatial induction of all breakpoints to the next finer spatial resolution
η − 1. For better visualization, root arcs are not shown in this figure.

at the decoder, the precision of texture, motion, and breakpoint data is higher
at coarser temporal levels t (see Sect. 5.3); the same is true for spatial resolu-
tions η. One can therefore expect that at lower bit-rates, few if any vertices
will appear at the finer spatio-temporal resolution levels. Since both spatial
and temporal induction processes are of interest, we must be able to resolve
conflicts between the induced breakpoints that may arise. In this work, we
perform induction in a particular sequence, in which breakpoints are induced
to all spatial levels of the frames at a particular level in the temporal hierarchy,
before moving to the next finer temporal level; this is visualized in Fig. 5.5.

HST-BPI is hierarchical in that it goes from coarse to fine spatial levels. At
each spatial level η, all cells are traversed; for cells that contain two breakpoints
on perimeter arcs, “discontinuity” line segments are formed. For each such line
segment, the following three steps are performed:

1. Breakpoint compatibility check (BCC) to find compatible (i.e., fore-
ground) motion to assign to discontinuity line segments;

2. Warping of temporally compatible line segments (Temporal induction);

3. Upsampling of all breakpoints to the next finer spatial resolution (Spatial
induction).
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The breakpoint compatibility check in step 1 of the proposed procedure is
almost identical to the first step of the temporal induction procedure presented
in Sect. 4.1. The only difference is that it is performed from coarse to fine
spatial levels, instead of just at the finest spatial resolution.

In a coding environment, (partial) breakpoint information that was esti-
mated at the target frame fb can be present; this is particularly true at higher
bit-rates. Since such spatial breaks were estimated on an actual motion field,
we want to give them higher priority than the temporally induced ones, which
we refer to as temporal breaks. In particular, for each intersection of the
warped line segment lb with an arc in fb, we check whether the temporally
induced break falls into a spatial break occupied (SBO) cell. A cell is con-
sidered SBO if it contains at least one spatial break. If the cell is empty or
only contains (spatio-)temporally induced breaks (i.e., not SBO), the tempo-
ral break is registered at the position of the intersection of the line segment
with the arc, replacing any existing breakpoint on that arc. Note that spatial
breaks can never be replaced by this scheme, because any arc containing a
spatial break necessarily belongs to an SBO cell. In the third step, all break-
points are transferred to the next finer spatial level, where spatial induction
is performed to induce breakpoints to the root arcs.

5.4.1 Evaluation of HST-BPI

This section evaluates the HST-BPI in a coding scenario. As mentioned in
Sect. 5.4, in a compression scenario, the aim of HST-BPI is to improve ex-
isting (spatial) breakpoint fields. At very high bit-rates, high quality spatial
breakpoint fields are anchored at the target frames, and temporal induction
should ideally not change anything. At medium to low bit-rates, only few or
no spatial breakpoints might be decoded at fine temporal levels; in this case,
the scheme completely relies on temporally induced breakpoints.

In order to evaluate the proposed HST-BPI with residual coding, we
perform one level of temporal decomposition followed by 5 levels of spatial
breakpoint-adaptive DWT of the texture and motion data; the wavelet coeffi-
cients are then coded using EBCOT [9]. Breakpoints are estimated based on
the motion fields, and coded as explained in [15]. The scalable bit-stream is
then decoded at various quality levels. Fig. 5.6 shows the PSNR of the recon-
structed target frame f1, and the horizontal axis shows the cost of coding the
breakpoints and the texture residual at frame f1. The precision of the break-
points at the reference frames f0 and f2 is kept high; for the target frame,
we either code all spatial vertices (red curve), code no spatial vertices (green
curve), or quantize the breakpoints in accordance to the quality associated
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(c) Winter

Figure 5.6: Evaluation of the proposed HST-BPI method on three synthetic test se-
quences. The Y-PSNR of the reconstructed frame f1 is obtained by decoding different
levels of spatial breakpoints at f1: The red curve is obtained by decoding all spatial breaks
at f1; the green curve shows the results if no spatial breakpoints are decoded at f1, and
hence relying on temporal breakpoint induction; the blue thicker curve shows the R-D
performance if breakpoints are scalably decoded with respect to the quality of the motion
field.
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with the motion field as explained in Sect. 5.3.2 (blue curve).
As expected, the graphs show that at lower bit-rates, where the cost of cod-

ing breakpoints becomes significant, the temporal breakpoint induction leads
to a significant improvement in R-D performance. There are many complex
dependencies between texture, motion, and breakpoints, which are not all ac-
counted for by the analytical model presented in Sect. 5.3. Nonetheless, the
resulting scalable rate allocation leads to a very good R-D performance at all
bit-rates; this is evidenced by the blue curve, which closely follows the green
curve at low, and the red curve at high bit-rates.

5.5 Rate-Distortion Results

In this section, we evaluate the R-D performance of the proposed BIHA
scheme, and compare it both with a traditional anchoring scheme, as well
as with SHVC [7], the scalable extension of HEVC [5]. Sect. 5.5.2 provides
a comprehensive study of the rate-distortion benefits offered by our proposed
approach, including the rate allocation scheme of Sect. 5.3. This study uses
a large collection of synthetic sequences2, for which ground truth motion be-
tween any pair of frames is available.

We have chosen to use ground truth motion for the comprehensive compar-
ison for two reasons. First, it is instructive to decouple motion estimation from
the motion compensation process, especially since the goal is to compare quite
different transform structures, involving motion between different frame pairs.
Also, we are not yet in a position to provide reliable experimental results with
a complete set of hierarchically structured motion fields that are estimated.
Ideally, motion fields employed in this work should exhibit hierarchical consis-
tency, including the property that motion fields anchored at the same frame
should share the same set of breakpoints. This property is inherently satisfied
by any valid ground truth motion field and could be introduced into motion
estimation schemes in the future. This is an interesting and parallel stream
of research that is beyond the scope of this thesis. To provide evidence of
the applicability of the scheme on real sequences, we apply the method on
two natural sequences, for which motion, estimated using a readily available
optical flow estimator, [85] almost satisfies the hierarchical consistency.

5.5.1 Experimental Setup

Fig. 5.7 gives an overview of the experimental setup. For both the proposed
BIHA and the traditional anchoring (TRAD) scheme, the sample sequences are

2Available on: http://ivmp.unsw.edu.au/˜dominicr/biha_scheme.html
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Figure 5.7: Experimental setup used for the evaluation of BIHA in a highly scalable video
compression system.

compressed using T = 3 levels of temporal decomposition, resulting in 8 frames
per GOP. The temporal subband frame textures are then subjected to D = 5
levels of spatial DWT, and the differentially coded motion fields are subjected
to D = 5 levels of spatial BPA-DWT. The quantized wavelet coefficients are
coded using EBCOT [9]. Breakpoints are coded using the method described in
[15], and quantized based on the quality of the motion fields they are coding;
intuitively, the more quantized the motion fields, the less breakpoints there
are. We remind the reader that all elements of the coded representation are
highly scalable. The results are obtained by weighting motion and texture
subbands according to (5.20) and (5.21), respectively; appropriate weights
were also computed for the traditional anchoring scheme.

For SHVC (SHM version 7.0 (HM-15.0)), we used the main profile of the
random access encoder (hierarchical B-frames), and created a base layer at
QP 38 at half the native resolution of the input sequence, and 5 enhancement
layers at full resolution at QPs {23, 26, 30, 34, 38}.

5.5.2 R-D Comparisons with Traditional Anchoring Scheme

We evaluate the rate-distortion performance of the proposed BIHA scheme,
and compare it with the traditional way (TRAD) of anchoring motion fields at
target frames. This comparison provides a good way of analyzing the benefits
of the proposed scheme. Fig. 5.8 shows R-D curves for the three synthetic
sequences we showed earlier in the evaluation of the HST-BPI scheme to eval-
uate the breakpoint quantization (see Fig. 5.6). In the figure, we compare
the R-D performance of the BIHA anchoring of motion (blue curves) with the
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(c) R-D Winter (640× 480)

Figure 5.8: Average per-frame bit-rate against PSNR for the same synthetic sequences
as the one we used in Fig. 5.6, obtained using T = 3 temporal decomposition levels (GOP
size=8). The filled regions on the left show the average bit-rate spent on coding motion
field data for the BIHA and TRAD schemes.
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Table 5.2: BD-PSNR and BD-Rate gains of the proposed BIHA scheme compared to
the traditional target-based anchoring (TRAD). Background (BG) and foreground (FG)
motion activity is summarized as Still, Translation, Acceleration, Rotation, and Zoom.

Sequence Activity Resolution BD-PSNR BD-RateBG FG

Baseball A 1A,1RA 640× 480 3.35dB -34.84%
Beach S 1ZA,2A 640× 480 0.97dB -12.46%
Space S 3A 640× 480 1.86dB -24.17%
Winter S 5A 640× 480 1.41dB -14.55%
Autumn A 2RT,1ZRT 1280× 736 0.78dB -9.82%
Butterfly T 1ZA 1280× 736 1.58dB -18.41%
Flowers R 1RT 1280× 736 -0.34dB 5.27%
Robots A 2ZA 1280× 736 0.63dB -12.71%
Balls A 3RA 1920× 1088 0.82dB -11.72%

Average - - - 1.23dB -14.82%

traditional anchoring at target frames (orange curves). The filled regions on
the left show the bit-rate used for just coding the motion data; one can see
how at medium to high bit-rates, the proposed hierarchical anchoring enables
more efficient motion coding.

More R-D results are summarized in Table 5.2 in terms of BD-PSNR and
BD-Rate between the proposed BIHA and the TRAD scheme.

One can see that the BIHA scheme outperforms the TRAD scheme in 8 of
the 9 sequences, with an average BD-Rate of −14.8%. The bit-rate saving on
just the motion fields is −13.2%, which shows the effectiveness of the proposed
method in terms of predicting motion. We note that the better R-D perfor-
mance of the BIHA scheme is not solely due to the lower cost of coding the
motion, but also because our scheme is able to produce geometrically consistent
predictions, even using quantized motion (see Fig. 5.10b/d/f for examples); on
average, the BD-rate on just the texture data is −17.5%. One can see that
the BIHA scheme performs worse in the “Flowers” sequence. This sequence,
containing significant rotation of the background, is particularly affected by
a shortcoming of the proposed background motion extrapolation technique in
disoccluded regions. The problem is that we currently extrapolate background
motion for each triangle individually, which creates artificial boundaries in the
disoccluded region, which are expensive to code. In future work, we plan to
address this issue by performing the background extrapolation on connected
disoccluded regions rather than individual triangles, which will avoid such arti-
ficial boundaries. Nonetheless, even without such improvement, the proposed
scheme clearly outperforms the TRAD method on balance.
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Table 5.3: BD-PSNR and BD-Rate gains of the proposed BIHA scheme compared to
TRAD NOBREAKS on sequences affected by motion blur. Background (BG) and fore-
ground (FG) motion activity is summarized as Still, Translation, Acceleration, Rotation,
and Zoom.

Sequence Activity Resolution BD-PSNR BD-RateBG FG

BaseballMBLUR A 1A,1RA 640× 480 3.85dB -33.32%
BeachMBLUR S 1ZA,2A 640× 480 2.54dB -27.78%
SpaceMBLUR S 3A 640× 480 2.78dB -33.72%
WinterMBLUR S 5A 640× 480 5.47dB -41.70%

Average - - - 3.73dB -34.13%

5.5.3 Importance of Motion Discontinuities

Many of the benefits of the proposed BIHA framework come from the use of
motion discontinuities. A natural question to ask is what happens if they are
removed; this question is particularly relevant in the presence of motion blur.
In [22], we proposed a way of including motion blur synthesis into the BIHA
scheme. For conciseness, we will not delve into the details of this work. For the
motion blur synthesis work, we generated sequences that are heavily affected
by motion blur. In this section, we use some of the sequences generated for
that work to show the importance of motion discontinuities even on sequences
that do not contain sharp transitions in the texture data.3

As a first step, we removed discontinuities from the BIHA framework, but
the results were too poor to be reported. Instead, it is instructive to consider
the traditional motion anchoring approach, where motion is anchored at the
target frames. In that case, motion fields do not have to be inverted, and
hence one can consider removing motion discontinuities to avoid the need to
code them. Furthermore, we blurred motion in texture blending regions4 so
that it smoothly transitions from foreground to background motion; we refer
to this as the “TRAD NOBREAKS” approach. The experimental settings are
the same as before, except that the number of temporal decomposition levels
is T = 2 (as opposed to T = 3 in the other experiments). Fig. 5.9 shows
rate-distortion curves for the two schemes, and Table 5.3 shows BD-PSNR
and BD-rate improvements of BIHA scheme over the TRAD NOBREAKS
scheme. The clear difference between the TRAD NOBREAKS and the BIHA
schemes indicates the value of signalling motion discontinuities. It is worth

3Wulff and Black [86] show that piecewise-smooth motion fields with sharp discontinuities
can be estimated on sequences that are heavily affected by motion blur.

4These are regions around moving objects, where the foreground and background texture
information is mixed together.
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(b) R-D SpaceMBLUR

Figure 5.9: Average per-frame bit-rate against PSNR for two synthetic scenes affected by
motion blur (MBLUR), obtained using T = 2 temporal decomposition levels. We compare
the BIHA scheme with the traditional anchoring of motion fields at target frames, as well
as motion fields anchored at reference frames with smooth motion in texture blending
regions (TRAD NOBREAKS).

noting that the performance difference is not solely due to the lack of motion
blur handling; less efficient motion field prediction and lack of identification
of occluded regions also contribute to the worse performance.

5.5.4 R-D Comparisons with SHVC

To show the potential and real-world application of the proposed scheme, we
provide preliminary comparisons of BIHA with SHVC. In SHVC, the base
and enhancement layers have to be defined at the encoding stage, which limits
the number of scalability levels to just a few. In contrast, the scalable bit-
stream created in the BIHA and TRAD schemes can be truncated at any bit-
rate, enabling a highly scalable framework. For this reason, BD-Rate/PSNR
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(a) R-D Balls (1920× 1088) (b) Crops

0 50 100 150 200 250 300 350 400 450 500 550 600 650 70020

22

24

26

28

30

32

34

36

38

40

kbits

Y
-P

SN
R

BIHA
TRAD
Breakpoints
SHVC

(c) R-D Autumn (1280× 736) (d) Crops
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(e) R-D Butterfly (1280× 736) (f) Crops

Figure 5.10: R-D comparisons of BIHA with SHVC on synthetic sequences. We show
the average per-frame bit-rate against Y-PSNR for various synthetic sequences, obtained
using T = 3 temporal decomposition levels (GOP size=8). The filled regions on the left
show the average bit-rate spent on coding motion field data for the BIHA and TRAD
schemes. (b/d/f) are crops of frames reconstructed at medium bit-rate (red circles in the
R-D plots), for the BIHA and TRAD scheme, respectively. Note how the proposed BIHA
scheme has much less ghosting artefacts than the traditional anchoring.
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(b) Stockholm (832× 480)

Figure 5.11: R-D comparison of BIHA with SHVC on common natural test sequences.
We show the average per-frame bit-rate against PSNR for the (a) “Station 2” and (b)
“Stockholm” sequences, obtained using T = 3 temporal decomposition levels (GOP
size=8). We compare the performance of the BIHA scheme with SHVC on two com-
mon test sequences, where the motion obtained using the optical flow estimator from [85]
almost satisfies the hierarchical consistency required by the proposed method. The filled
regions on the left show the average bit-rate spent on coding motion field data for the
BIHA scheme; the black line at the far left shows the cost of coding the breakpoints.

comparisons between these entirely different schemes are not very meaningful.
Instead, we provide R-D curves for three synthetic sequences in Fig. 5.10, as
well as two for natural test sequences in Fig. 5.11; in both figures, the limited
scalability of SHVC is indicated by the staircase curve in the figure.

The distortion is expressed in terms of average Y-PSNR for the whole
GOP, and the rate on the horizontal axis corresponds to the average number
of kbits per frame decoded from the scalable bit-stream. For the BIHA and
TRAD schemes, the shaded areas on the left show the average number of bits
spent on just the motion fields, and the black curve shows the cost of coding
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breakpoints (almost identical in the BIHA and TRAD scheme).
One can observe that the R-D performance of the BIHA scheme is ap-

proaching the one of SHVC at higher bit-rates, and even outperforms SHVC
on the two natural sequences; at lower bit-rates, SHVC performs better. In
the next section, we provide a number of ways how the proposed scheme could
be further improved. Even so, our highly scalable algorithm is competitive
with SHVC at higher bit-rates.

5.6 Potential for Improvements

We emphasize that in the comparisons with SHVC, we are comparing a mature
codec with a scheme that has much potential for optimization. In this section,
we give a list of suboptimalities in the present scheme; improving them would
likely have a positive impact on the compression performance of the BIHA
scheme. There are a number of places where the proposed BOA-TFI – which
forms the essential building block of the BIHA scheme – can be improved.

1. Motion Discontinuity Measure In a compression scenario, where
breakpoints are used to conserve the sharp motion discontinuities on
quantized motion, it is quite a natural choice to also use breakpoints
in the temporal reasoning. However, breakpoints are a binary repre-
sentation of motion discontinuities; in particular, it is not possible to
distinguish between discontinuities on the trailing side (useful to handle
disocclusions, see Sect. 4.3.1), and discontinuities on the leading side of
moving objects, where double mappings arise (see Sect. 4.2.2);

2. Geometrical Consistency Three motion field inversions are required
to obtain the motion fields M̂b→a and M̂b→c, which are used to predict
the target frame. Each motion inversion can introduce errors, which
results in the fact that the forward and backward pointing motion field
are not guaranteed to be geometrically consistent;

3. Texture Optimizations We identify two cases where the presented
scheme could be improved by applying texture optimizations:

1) The CAW procedure preserves the sharp discontinuities at moving
object boundaries in the mapped motion fields. The warped texture
information thus exhibits sharp discontinuities as well, which can lead
to a “cut-out” effect in the interpolated frames around moving objects.

2) The estimated disocclusion information is used to switch from bidirec-
tional to unidirectional prediction in regions that are only visible in one
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reference frame. In regions where the illumination drastically changes
between the two reference frames, the transition between uni- and bidi-
rectional prediction can be visible.

In a TFI scenario, improving the above-mentioned points is expected to have a
positive impact on the visual quality of the interpolated frames. In a (scalable)
video compression scenario, it is likely that it would improve the prediction
performance, resulting in lower prediction residuals. In the next chapter, we
propose modifications to BOA-TFI which address all the above-mentioned
shortcomings. There are also improvements that are directly aimed at im-
proving the compression performance.

1. Coding of Inferred Motion Residuals: Inferred motion residuals
are another potential source of geometrical inconsistencies. Ideally, the
prediction residuals of inferred motion fields are nonzero only in regions
of disocclusions, where no inconsistencies can arise. However, in the
current implementation, there is no guarantee that this is the case. In
order to avoid such inconsistencies and avoid spending unnecessary bits
on parts of the inferred motion residual where it should be zero, one
could only code the residuals in regions where the disocclusion mask
Ŝc→b = 0;

2. Joint Coding of Motion Fields: Currently, each motion field (resid-
ual) of each frame at each level is coded independently. Motion fields
could be coded more efficiently by jointly coding the motion information,
since wavelet coefficients that are nonzero at a coarse temporal level are
likely to be nonzero at finer temporal scales; the same reasoning applies
for the horizontal and vertical components of motion.

5.7 Chapter Summary

In this chapter, we presented a novel paradigm for anchoring motion fields
employed in video compression. The proposed bidirectional hierarchical an-
choring (BIHA) of motion fields at reference frames has some major advan-
tages compared to the traditional way of anchoring motion fields at target
frames. Every motion field involved in motion-compensated temporal pre-
diction is warped from reference to target frames – a process during which
we readily observe disocclusions; this valuable information traditionally has
to be communicated as side information. Furthermore, the motion fields we
compute for temporal prediction warp texture in a geometrically consistent
manner, even if the motion is quantized. The analytical model developed in
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5.7 Chapter Summary

Sect. 5.3 provides insight into the relative importance and hence the weights
to be assigned to the different spatio-temporal texture and motion field sub-
bands. To further improve the scalability attributes of the BIHA scheme, we
propose a hierarchical spatio-temporal breakpoint induction (HST-BPI) scheme
to induce breakpoints from coarse to fine spatio-temporal levels. The funda-
mental building block of the BIHA scheme is the BOA-TFI method presented
in Sect. 4.4 of the previous chapter. As such, improving the TFI scheme can
be expected to have a positive impact on the coding performance of the BIHA
scheme; this is the topic of the next chapter.
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6 Forward-Only Hierarchical
Anchoring (FOHA)

of Motion

The bidirectional hierarchical anchoring (BIHA) of motion presented in the
last chapter constitutes a fundamental change in the way motion is anchored
and employed in a video compression system. Anchoring motion at reference-
frames might appear counter-intuitive, since the motion information has to be
mapped to target frames in order to serve as prediction reference. However, as
shown in the last two chapters, this change of motion anchoring has a number
of key advantages over the traditional anchoring of motion. First, motion
information at finer temporal levels can be “recycled” from coarser levels, via
the motion scaling operation. Second, during the motion mapping process,
disoccluded regions are readily observed; this valuable information has to be
explicitly communicated in a traditional anchoring scheme.

The framework used to map motion from reference to target frames essen-
tially performs TFI. We have shown that the fundamental building block of the
BIHA scheme, which we call BOA-TFI, is able to produce state-of-the-art TFI
results. In Sect. 5.6, we identified a number of potential improvements of the
BOA-TFI scheme, which are likely to have a positive impact on compression
performance as well. In this chapter, we augment BOA-TFI with the following
contributions, which address the key issues identified in the BOA-TFI scheme:

1. Motion Discontinuity Measure We propose a disocclusion and fold-
ing likelihood map (DFLM), which improves the robustness of the motion
inversion process, in particular in regions of complex geometry;

2. Geometrical Consistency We change the direction of motion field
inference to a forward inference. This simplifies the motion anchoring to
a forward-only anchoring, which leads to further improved geometrical
consistency of the bidirectionally interpolated target frames, while at the
same time reducing the computational complexity;

3. Texture Optimizations Two effective texture optimizations are pro-
posed that selectively improve problematic regions of the interpolated
texture data, which improves the interpolated frames both visually as
well as quantitatively.
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We present the motion-divergence based DFLM in Sect. 6.1, and highlight its
advantages over the breakpoint-based motion discontinuity measure employed
in BIHA. In Sect. 6.2, we introduce the FOA-TFI scheme, and show the re-
quired changes that have to be made to the motion warping process. The
combination of a more robust motion discontinuity measure with the forward-
only motion anchoring improves the quality of the warped motion fields that
are used as a prediction references when compared to BOA-TFI. While the
better motion fields have a positive impact on the reconstructed frames, the
interpolated frames exhibit sharp discontinuities around moving objects; this
“cut-out” effect is a consequence of the sharp discontinuities that are present
in the mapped motion fields. Furthermore, artificial boundaries can appear in
regions where the occlusion-aware scheme switches from bidirectional to unidi-
rectional prediction; these visually disturbing “transition boundaries” are most
visible in regions where the illumination changes between the two prediction
references. In Sect. 6.3, we propose two texture optimizations that specifically
target these regions, without affecting other regions that are expected to be
correctly predicted.

In Sect. 6.4, we extensively evaluate the TFI performance of the FOA-TFI
scheme, and compare it with state-of-the-art TFI schemes from the literature,
as well as with BOA-TFI. While the focus of this chapter is on improving the
TFI performance, we outline a highly scalable video compression scheme in
Sect. 6.5 which is based on FOA-TFI, which we call FOHA, and briefly discuss
potential advantages over the BIHA scheme.

6.1 Disocclusion and Folding Likelihood Map (DFLM)

In the context of highly scalable video compression, where we use breakpoints
to drive the breakpoint-adaptive DWT to efficiently compress motion fields,
it is quite a natural choice to also use breakpoints as the basis for reasoning
about motion discontinuities. However, the breakpoints themselves are a bi-
nary description that contains only some of the information related to motion
field discontinuities. In this section, we describe an alternate approach that
works directly with the motion data, using motion divergence as a soft, signed
indicator of disocclusion and folding of the motion field [108].

We use u(x, y) and v(x, y) to denote the horizontal and vertical component
of a motion field Mi→j . The divergence of the motion field is defined as

div(Mi→j) = ∇ ·Mi→j = δu

δx
+ δv

δy
. (6.1)
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6.1 Disocclusion and Folding Likelihood Map (DFLM)

(a) Expansive
(div(·) > 0)

(b) Contractive
(div(·) < 0)

(c) Disocclusion
(div(·) > 0)

(d) Folding
(div(·) < 0)

(e) Special case
of div(·) = 0

Figure 6.1: Motion vector constellations for divergence analysis. (a) positive divergence
indicates expansive motion, whereas (b) negative divergence is caused by contractive
motion. In the presence of motion discontinuities, (c) positive divergence is indicative of
disocclusion, whereas (d) negative divergence indicates folding. (e) depicts a particular
case where the divergence is zero in the presence of a motion discontinuity; in this case,
no disocclusion or folding arises. (a)-(d) adapted from [108].

Let us next consider the discrete case. Letting u[m,n] and v[m,n] be the
horizontal and vertical component of a discrete motion field, the divergence
at pixel location m = [m,n] can be computed as

div(Mi→j [m]) = u[m+ 1, n]− u[m− 1, n] + v[m,n+ 1]− v[m,n− 1]. (6.2)

In Fig. 6.1, we show different configurations of motion vectors, together with
the corresponding sign of the divergence value. Divergence can be used to dis-
tinguish geometric expansion (div(·) > 0) and contraction (div(·) < 0); this is
visualized in Fig. 6.1a/b. Fig. 6.1c/d show cases where motion discontinuities
(red dashed lines in the figure) give rise to occlusions; more precisely, positive
divergence is indicative of disocclusion (Fig. 6.1c), whereas negative divergence
(i.e., convergent motion) is indicative of folding (Fig. 6.1d). We use the fact
that the derivative of the divergence is nonzero at motion discontinuities to
distinguish disocclusion and folding from largely expanding or contracting re-
gions, respectively. Fig. 6.1e shows a special case of a motion field with motion
discontinuity, where the divergence is zero. We point out that the fact that the
divergence is zero implies that such motion discontinuities do not give rise to
disocclusion or folding. In other words, reasoning about divergence allows us
to only consider motion discontinuities where disocclusion or folding happens.

In order to account for the fact that on real data the exact location of the
motion discontinuity is unknown, we convert the motion divergence map to
a disocclusion and folding likelihood map (DFLM). The DFLM for a motion
field Mi→j , denoted as D̂i→j , is obtained by applying a Gaussian blur to the
motion divergence field:

D̂i→j [m] = (div(Mi→j) ∗ h)[m], (6.3)
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(a) Bandage 1 M3→4

(b) Breaks

(c) DFLM

Figure 6.2: Motion discontinuity representations estimated on the motion field in (a),
using (b) breakpoints, and (c) the DFLM proposed in this chapter. Breakpoints in the
same cell (of any colour) are connected together to form discontinuity line segments,
which serve as a binary representation of motion discontinuities. The DFLM can be used
to distinguish between leading (red) and trailing side (cyan) of moving objects, which is
very valuable in the identification of foreground and background objects.

where h[m] is a two-dimensional Gaussian kernel. While one could envision
an adaptive filter size, we found that a fixed size for h[m] (7×7) works well on
a wide range of sequences. For consistency of notation, we will use D̂i→j(x)
whenever we refer to accessing a continuous location of the DFLM, which is
obtained using bilinear interpolation of the discrete DFLM.
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Fig. 6.2 shows an example estimated breakpoint field and DFLM. For
viewing purposes, we show a subsampled version of the breakpoint field; the
different colours of the dots indicate vertices that become alive at that level
(red), vertices that became alive at a coarser level (orange), and spatially
induced breaks (magenta); For the purpose of inducing motion discontinuities,
they are treated the same; that is, whenever a cell contains two breakpoints,
they are connected together to form a discontinuity line segment.

For the DFLM, we use cyan for divergent regions, which arise on the trail-
ing side of moving objects, and red for convergent (i.e., negative divergence)
regions, which arise on the leading side of objects in motion. Visual inspec-
tion of Fig. 6.2 shows how breakpoints only inform about the presence of a
motion discontinuity, whereas the signed DFLM further allows us to deduce
the type (e.g., divergent or convergent) of motion, as well as magnitude of the
divergence.

We now provide some more motivation behind the use of motion divergence
as a measure of disocclusion and folding. Let us first consider one rigid object
moving on top of another rigid object; in this case, the divergence at the
motion boundary measures the relative motion difference of the two objects in
the direction normal to the boundary, which is exactly where disocclusion and
folding arises. In the case of non-rigid objects, disocclusion and folding involves
motion whose projection onto the boundary normal is discontinuous at the
boundary; hence, the continuous derivative in that direction is infinite, which
swamps any finite contribution of non-rigid transformations to the divergence.
Of course, the discrete divergence approximation we use does not produce
infinities; nonetheless the above argument essentially remains intact, so that
large positive divergence (e.g., div(Mi→j) > +1) is indicative of disocclusion,
whereas div(Mi→j) < −1 is indicative of folding.

6.2 Forward-Only Anchoring of Motion

In this section, we present the FOA-TFI scheme, and contrast it with the BOA-
TFI scheme introduced in Sect. 4.4. Fig. 6.3 depicts the motion anchoring1

used in the FOA-TFI scheme, as well as the BOA-TFI scheme. In the same
way as BOA-TFI forms the main building block of the BIHA scheme for highly
scalable video compression, FOA-TFI forms the essential building block of
what we refer to as forward-only hierarchical anchoring (FOHA) scheme for
video compression.

1The term motion anchoring is more meaningful in a compression scenario, where the
anchoring refers to motion fields that are coded.
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(a) Motion anchoring in FOA-TFI (b) Motion anchoring in BOA-TFI

Figure 6.3: Comparison between the motion anchoring of (a) FOA-TFI and (b) BOA-
TFI. One can see that the direction of the inferred motion field (dashed orange arrow) is
reversed. While not apparent in the figure, this change guarantees geometrical consistency
of the mapped motion fields that serve as prediction references.

From the figure, one can see that the anchoring (and therefore direction)
of the inferred motion field (dashed orange arrows in the figure) is flipped. As
we will see in this section, this has a number of advantages over the BOA-TFI
scheme. In fact, the change of anchoring of the inferred motion field increases
the geometrical consistency of the mapped motion fields, while at the same
time reducing the computational complexity of the frame interpolation process
by roughly a factor of 3. We explain why this is in more detail in Sect. 6.2.2;
the reduced computational complexity is also confirmed on a comprehensive
experimental evaluation in Sect. 6.4.3.

The change of motion anchoring and the new motion discontinuity measure
(introduced in the last section) are two separate changes. However, they ad-
dress different shortcomings of BOA-TFI, and therefore we decided to present
their joint impact. Consequently, we use FOA-TFI to refer to the scheme that
uses the forward-only motion anchoring and employs the DFLM as motion dis-
continuity measure; similarly, BOA-TFI refers to the bidirectional anchoring
of motion which uses breakpoints as motion discontinuity measure.

We give a high-level overview of the FOA-TFI scheme in Sect. 6.2.1. FOA-
TFI necessitates motion fields to be mapped from reference to target frames,
as was the case for BOA-TFI. The main ideas that are used to disambiguate
double mappings, as well as to assign sensible motion in disoccluded regions,
remain the same as the ones used in the BOA-TFI method. We then present
the required changes to the TFI scheme. In particular, we detail the modi-
fications needed to incorporate the DFLM as alternate motion discontinuity
measure in Sect. 6.2.3. In Sect. 6.2.4, we present how disoccluded regions
are detected and handled in the FOA-TFI framework. Lastly, we compare
FOA-TFI with BOA-TFI in Sect. 6.2.5, and highlight the joint advantages of
FOA-TFI and the DFLM.
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6.2.1 FOA-TFI Overview

Guided by Fig. 6.4, we give an overview of FOA-TFI, on the example of frame
upsampling by a factor of 2; arbitrary upsampling factors can be obtained by
choosing an appropriate scaling factor α. The first step of the proposed method
consists of estimating motion discontinuities by computing the DFLM on the
input motion fields Ma→c and Mc→e. Next, we scale the “parent” motion
field Ma→c by a factor of 0.5 to obtain an estimate of M̂a→b, under constant
velocity assumption. M̂a→b, together with the estimated DFLMs D̂a→c and
D̂c→e, are then used to compute the inverted M̂b→a, as well as to infer M̂b→c

using a motion operation we refer to as “forward inference” of motion. During
the motion inversion process, we compute a forward disocclusion mask Ŝb→a,
which is zero at locations that are not visible in either fa, and 1 elsewhere.
From the forward inferred motion field M̂b→c, we further compute a reverse
disocclusion mask Ŝb→c, which is zero at all locations that are not visible in fc.
Together with the inverted and inferred motion fields M̂b→a and M̂b→c, these
disocclusion masks are then used to guide the bidirectional, occlusion-aware
motion-compensated temporal frame interpolation process.

6.2.2 Forward Inference of Motion

As can be seen by comparing Fig. 6.3a/b, the difference between FOA-TFI
and BOA-TFI is the anchoring (and hence direction) of the inferred motion
field (dashed orange arrow in the figure). In BOA-TFI, M̂c→b is “reverse”
inferred, and then has to be inverted in order to obtain M̂b→c, which serves as
prediction reference. In FOA-TFI, we “directly” infer the (forward pointing)
motion field M̂b→c using an operation we call forward motion inference:

M̂b→c = Ma→c ◦ (M̂a→b)−1, (6.4)

where ◦ denotes the composition operator.
More precisely, using Ti→j to denote the affine interpolated motion field ob-

tained from Mi→j , each location mb of the forward inferred motion M̂b→c[mb]
is computed as follows:

M̂b→c[mb] = Ta→c(xa)︸ ︷︷ ︸
= 1
α
·Ta→b(xa)

−Ta→b(xa) =
( 1
α
− 1

)
Ta→b(xa). (6.5)

For values of α ∈]0, 1[, the weighting factor
(

1
α − 1

)
will be positive, i.e., the

inferred motion points in the same direction as the scaled motion Ta→b(xa),
hence the term forward inference.
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Figure 6.4: Overview of FOA-TFI. Input to the scheme are a motion field Ma→c (and
Mc→e, only used for motion discontinuities), and the two reference frames fa and fc.
In the first step, we compute the (signed) divergence of the input motion fields Ma→c

and Mc→e to obtain D̂a→c and D̂c→e, respectively. Ma→c is then scaled by a factor of
0.5 to obtain M̂a→b. Using information about motion discontinuities (i.e., discontinuities
displace with foreground objects), M̂a→b is inverted to obtain M̂b→a; at the same time,
we infer M̂b→c. During this process, we compute a forward disocclusion mask Ŝb→a;
the reverse disocclusion mask Ŝb→c is computed using reasoning on the inferred motion
field M̂b→c. Together, they are used to guide the bidirectional motion-compensated TFI
process to obtain the interpolated frame f̂b.
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As can be seen in (6.4), the motion inference process involves the inversion
of M̂a→b; what this means is that the motion inversion and inference are
performed jointly, leading to geometrical consistency of the motion fields M̂b→a

and M̂b→c, which are used to interpolate the target frame fb. In contrast, the
BOA-TFI framework we presented in Sect. 4.4 necessitates multiple motion
field inversions, and geometrical consistency – in particular around motion
discontinuities – is not guaranteed; we discuss the consequences of this in
Sect. 6.2.5, and refer to the visual results in Fig. 6.9.

6.2.3 Resolving Double Mappings using DFLM

In the FOA-TFI scheme, the inverted and the forward inferred motion fields
M̂b→a and M̂b→c are obtained using the same CAW procedure as the one
used in BOA-TFI presented in Sect. 4.2. In short, triangles of affine motion
are formed in the reference frame and mapped to the target frame. During
this mapping process, as observed earlier, multiple triangles might overlap at
location mb in the target frame fb. In other words, there are (at least) two
locations x1

a and x2
a in fa, which are mapped by Ta→b to the same location mb

in fb, i.e.,
x1
a + Ta→b(x1

a) = x2
a + Ta→b(x2

a) = mb. (6.6)

We remind the reader that for BOA-TFI, we proposed a HST-BPI procedure
to warp motion discontinuity information – represented using breakpoints – to
the target frame fb, and double mappings were resolved using the observation
that motion discontinuities travel with the foreground object. The DFLM does
not lend itself nicely to be mapped to the target frame; instead, we make all
the reasoning about motion discontinuities to identify the foreground moving
between the reference frames. Guided by Fig. 6.5, we now provide a more
detailed description of how double mappings can be resolved using DFLM.

The figure shows (colour-coded) motion fields for two consecutive frames
(fa and fc) of the input sequence, where a foreground object moves on top of
a static background.2 The grey region in the top row of Fig. 6.5 outlines the
true inverse motion field at frame fb, which is not known to the procedure.
The key idea behind the proposed method is that the two points x1

a and x2
a

that create the double mapping in fb must be separated in the reference frame
fa; moreover, along the line connecting the two points in fa, denoted as l,
there must be a region of convergent (i.e., negative divergence) motion.

If we map each point on line l from frame fa to frame fb (see bottom row

2The example uses a static background for ease of explanation; we note that the method
remains valid for any combination of moving foreground and background objects.
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Figure 6.5: Illustration of how double mappings are resolved using the DFLM as motion
discontinuity representation. When mapped from fa to fb using Ta→b, x1

a and x2
a map to

the same location mb in fb. We use the DFLMs D̂a→c and D̂c→e as motion discontinuity
measures (see Sect. 6.1) to identify the foreground motion vector. We search for the point
of maximum negative divergence along the line l, formed by connecting x1

a and x2
a. Let

B1
a and B1

a be the two points on the line slightly closer to x1
a and x2

a, respectively. When
B1

a and B1
a are mapped to the other reference frame fc, the one which maps into a region

of larger negative divergence (red) identifies the foreground motion; here, Ta→b(x1
a) is

the foreground motion, since B1
c falls into a region of larger negative.

of the center column in Fig. 6.5), using Ta→b, we expect to see a discontinuous
jump, which corresponds to the point of maximum convergence in frame fa.
We denote the points on either side of the discontinuous jump as B1

a and B2
a.

The location of these points mapped to fc is

Bp
c = Bp

a + Ta→c(Bp
a), p ∈ {1, 2}. (6.7)

The importance of these points is that one of the Bp
c s is expected to fall into

a region of similar (i.e., negative) divergence, whereas the other is not; the
foreground motion is the motion of the point which maps into the region of
large(r) negative divergence. That is, the motion of the inverted motion field
M̂b→a at the double mapped location mb is

M̂b→a[mb] =


−Ta→b(x1

a) D̂c→e(B1
c ) < min(D̂c→e(B2

c ),−Θ)

−Ta→b(x2
a) D̂c→e(B2

c ) < min(D̂c→e(B1
c ),−Θ)

M̂old
b→a[mb] otherwise

, (6.8)
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where Θ > 0 is a threshold that guarantees that only motion is selected
that falls into a region of negative divergence. In the rare case where
min(D̂c→e(B1

c ), D̂c→e(B2
c )) > −Θ, the previously assigned motion M̂old

b→a[mb]
is kept. Combining (6.5) and (6.8), the motion of the forward inferred motion
field M̂b→c at location mb is readily assigned as

M̂b→c[mb] =
(

1− 1
α

)
M̂b→a[mb]. (6.9)

An important advantage of the DFLM is that it allows us to approximately
halve the discontinuity boundaries that have to be considered compared to
the (unsigned) discontinuity representation induced from breakpoints. This
proves particularly useful in regions of complex geometry, as well as for thin
moving objects; examples can be seen in Fig. 6.9.

6.2.4 Handling of Forward and Reverse Disocclusions

One key property of the motion field inversion operation presented in Sect. 4.2
is that the inversion of a motion field Mi→j allows us to readily observe regions
that get disoccluded between frames fi and fj . In the BOA-TFI scheme (see
Fig. 6.3b), both the scaled motion field M̂a→b and the reverse inferred motion
field M̂c→b are anchored at reference frames. In order to serve as prediction
references, they both have to be inverted, and hence disoccluded regions are
observed for both reference frames. In FOA-TFI, on the other hand, the
forward inferred motion field is anchored at the target frame. The consequence
is that while FOA-TFI readily observes regions that get disoccluded between
fa and fb during the inversion of M̂a→b, it does not observe which regions of
fb are not visible in fc as part of the motion mapping process.

We use Fig. 6.6 to guide the ensuing discussion about how disoccluded
regions are handled in FOA-TFI. In the example of the figure, a rectangle
moves from right to left between frames fa and fc. We find it helpful to distin-
guish between forward and reverse disocclusions. As can be seen in Fig. 6.6b,
forward disocclusions (yellow area) are regions that get disoccluded between
frames fa and fb; they correspond to regions in the target frame fb that are
not visible in fa. Similarly, reverse disocclusions (cyan areas in the Fig. 6.6b)
are regions that get disoccluded as objects transition in “reverse time” from fc

to fb. Fig. 6.6d shows the forward inferred motion field M̂b→c, where the CAW
procedure assigned an affine interpolated motion in the forward disoccluded
region. In Sect. 6.2.4, we show how more meaningful motion can be assigned in
forward disoccluded regions; the background motion extrapolation procedure
(see Fig. 6.6e) is similar to the disocclusion handling procedure presented in
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(a) fa (b) fb (c) fc

(d) Affine motion (e) BG motion extrapolated (f) Observed disocclusions

Figure 6.6: Illustration of forward and reverse disocclusions. The rectangle moves from
right to left between the (a) the left reference frame fa and (c) the right reference frame
fc, on top of static background. As shown in (b), forward disocclusions (yellow) are regions
that get uncovered as objects travel forward in time. Such regions should only be predicted
from fc; however, as shown in (d), the affine interpolated motion assigned by the CAW
procedure is “non-physical”, and should be replaced by extrapolated background motion
(e). Reverse disocclusions (cyan) are regions that get uncovered as objects transition
in “reverse time”. In such regions, valid motion is assigned. However, unlike forward
disocclusions, the procedure does not readily observe reverse disocclusions; (f) the white
regions are considered as visible in both reference frames, whereas in reality, they are not
visible in fc.

Sect. 4.3.1, but all the reasoning happens between the two reference frames.
As shown in Fig. 6.6f, the disocclusion mask obtained only contains in-

formation about forward disocclusions. In particular, the white regions in
the figure are considered as visible in both reference frames, whereas in real-
ity, they are not visible in fc. Using the terminology introduced before, we
propose a way of identifying forward disoccluded regions in Sect. 6.2.4.2.

6.2.4.1 Changing Motion in Forward Disoccluded Regions

Mapping triangles to frame fb using Ta→b exposes regions that get forward
disoccluded between frames fa and fb; as mentioned earlier, this information
is useful to guide the bidirectional frame interpolation process as shown in
(4.12), and we record it in a forward disocclusion mask Ŝb→a:

Ŝb→a[m] =

 0 m disoccluded

1 otherwise
. (6.10)

In regions where Ŝb→a[m] = 0, the affine interpolated motion between back-
ground and foreground motion produced by the CAW method (see Fig. 6.6d)
is inappropriate. In fact, regions that are disoccluded when going from frame
fa to fb are likely to be visible in frame fc; we therefore want to assign a
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(a) fa (b) fb (c) fc

Figure 6.7: Illustration of the motion extrapolation method we employ in forward dis-
occluded regions. Since there is no motion field anchored at the target frame fb, we
use D̂a→c and D̂c→e to drive the motion extrapolation at frame fb. Mapped by Ta→c,
two edges of the stretched “disoccluding” triangle are expected to intersect with regions
of large divergence in D̂c→e of fc (solid blue line). The point of maximum divergence
along the two edges is mapped to the target frame fb using the appropriately scaled affine
motion; this gives a good estimate of the location of the motion discontinuity. The last
step extrapolates the motion from the triangle vertices up to the motion discontinuities.

motion that maps forward disoccluded pixels to the corresponding location in
fc. This can be realised by extrapolating background motion in such forward
disoccluded regions (see Fig. 6.6e).

As it turns out, no explicit distinction between foreground and background
motion needs to be made to achieve the desired result. Key to the proposed
procedure of assigning “appropriate” motion in forward disoccluded regions
is the use of motion discontinuities, which mark the end of the disoccluded
region. As can be seen in Fig. 6.7a, the intersection of motion discontinuities
with the triangle in frame fa is somewhat arbitrary; in particular, mapping
these intersections to fb under the affine motion assumption is unlikely to
produce a good estimate of the “true” location of the motion discontinuity.
By contrast, using the affine model to transfer boundary locations from the
stretched triangle in fc to target frame fb yields a much more reliable estimate
of the “true” boundary location. To see this, observe that the contractive
transform from fc to fa necessarily maps corresponding motion boundaries to
an accuracy of less than one pixel separation. At half the frame separation,
the mapped boundary discrepancy in frame fb should then be no larger than
half a pixel.

Consequently, the procedure we propose to extrapolate motion in forward
disoccluded regions finds the discontinuity boundaries in fc, which are then
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mapped to the target frame fb. To locate motion boundaries in fc, we find the
maximum DFLM value in D̂c→e along the three edges of the stretched triangle
in frame fc. We expect an isolated large value along two of the three edges
in D̂c→e; we call such edges split edges, since they are expected to connect
motion vectors from two different moving objects.

Let Bp
c , p ∈ {0, 1}, denote the points of largest divergence along the two

split edges of the disoccluding triangle. Ultimately, we are interested in the
location of these discontinuities in the target frame fb. Using uaff(·) to denote
the affine function that describes motion M̂c→a over the triangle in fc as
obtained by the CAW procedure, the location of the discontinuity in the target
frame fb can be obtained as

Bp
b = Bp

c − 0.5uaff(Bp
c ). (6.11)

Connecting the two mapped Bp
b s splits the triangle in fb into a triangle and a

quadrilateral (see Fig. 6.7b).
The last step of the motion extrapolation procedure is to copy the motion

from the vertices up to the motion discontinuities Bp
b ; this effectively extrap-

olates the background motion in the background region of the disoccluded
triangle. Similarly, in the (much smaller) foreground region, the foreground
motion will be extrapolated.

6.2.4.2 Detecting Reverse Disocclusions

In the proposed bidirectional prediction framework, we are also interested in
regions of the target frame fb which are not visible in frame fc. In such regions
of reverse disocclusion, the motion assigned to M̂b→a[m] (and M̂b→c[m]) is
appropriate; that is, it can be expected to map to a corresponding location in
fa, where it is visible. The challenge is, however, to know that they are not
visible in fc. In this section, we describe how a reverse disocclusion mask Ŝb→c
can be computed; we guide the description using Fig. 6.8, where a foreground
object moves on top of a background that is moving in the opposite direction;
that is, both foreground and background are in motion in this example.

The proposed procedure uses the inferred motion field M̂b→c and the
DFLM D̂b→c to detect regions in fb that are not visible in fc. We observe
that regions of large negative divergence in D̂b→c correspond to the trailing
side of foreground objects as they (hypothetically) move (backwards in time)
from frame fc to fb; this is the start of any reverse disoccluded region in Ŝb→c
(solid red line in Fig. 6.8). The “width” of the reverse disoccluded region can
be approximated by a disocclusion vector vDIS , which points to the end of
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Figure 6.8: The inferred motion field M̂b→c is used to identify regions in fb that are not
visible in fc; we refer to such regions as “reverse disocclusions”. The start of disoccluded
regions is outlined by regions of large negative divergence in D̂b→c; these belong to the
trailing side of the foreground object as it moves (in reverse time) from fc to fb. vDIS ,
which points to the end of the disoccluded region, is defined by the relative difference in
motion between the foreground (vF G) and background motion (vBG).

the disocclusion region (dotted green line in the figure):

vDIS = vFG − vBG, (6.12)

where vFG and vBG are motion vectors from the fore- and background mo-
tion, respectively, as identified during the double mapping resolving procedure
presented in Sect. 6.2.3. In practice, so as to obtain closed reverse disoccluded
regions, we densely sample such disocclusion vectors in regions where D̂b→c is
negative. The reverse disocclusion mask is then obtained as:

Ŝb→c[m] =

 0 m covered by a vDIS
1 otherwise

. (6.13)

6.2.5 Comparison between BOA-TFI and FOA-TFI

In this section, we show the joint benefits of the forward-only anchoring and
the DFLM to handle regions around moving objects on a concrete example.
For this, we compare the temporal frame interpolation results obtained using
BOA-TFI with FOA-TFI. Fig. 6.9 uses a frame from the “Market 2” sequence,
which contains complex motion and a large variety of moving objects. The esti-
mated disocclusion mask in Fig. 6.9a indicates difficult regions around moving
object boundaries. Fig. 6.9e/g and Fig. 6.9f/h show the backward and forward
pointing motion fields obtained in the BOA-TFI and the FOA-TFI scheme,
respectively. The following two main observations can be made.

First, as a direct consequence of the fact that FOA-TFI only involves the
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(a) Estimated Disocclusion Mask (b) Market 2 f̂15.5 (FOA-TFI)

(c) Breakpoints at f15 (BOA-TFI) (d) DFLM D̂15→16 (FOA-TFI)

(e) Crops BOA-TFI M̂15.5→15 (f) Crops FOA-TFI M̂15.5→15

(g) Crops BOA-TFI M̂15.5→16 (h) Crops FOA-TFI M̂15.5→16

(i) Crops BOA-TFI f̂15.5 (j) Crops FOA-TFI f̂15.5

Figure 6.9: Comparison of FOA-TFI with BOA-TFI. (a) shows the union of the esti-
mated forward and reverse disocclusion masks (Ŝ15.5→15 ∪ Ŝ15.5→16), where yellow and
cyan indicate disoccluded regions in the previous and future reference frame, respectively;
(b) shows the interpolated frame using the proposed FOA-TFI method. (c) shows the
estimated breakpoint map as employed in the BOA-TFI scheme; (d) shows the DFLM
employed in the proposed FOA-TFI method; (e-h) show crops of the backward and for-
ward motion fields involved in the prediction of the target frame, where one can see the
more accurate and consistent motion obtained using the FOA-TFI scheme. (i) and (j)
show the corresponding crops of the interpolated target frame.
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inversion of one motion field (as opposed to three inversions in BOA-TFI),
the backward and forward pointing motion fields are much more consistent;
in fact, in FOA-TFI, it is guaranteed that M̂b→c = −M̂b→a, as can be seen by
comparing the forward and backward pointing prediction fields in Fig. 6.9f/h.

The second observation is with respect to the new motion discontinuity
measure. The DFLM is a signed measure of disocclusion and folding; it is
positive on the trailing side of moving objects (blue in Fig. 6.9d), and negative
on the leading side (red in Fig. 6.9d). By contrast, in the BOA-TFI approach,
the discontinuity information derived from breakpoints does not carry enough
information to explicitly distinguish between leading and trailing boundaries
of moving objects. Therefore, the proposed FOA-TFI is less likely to fail to
resolve double mappings correctly. This is evidenced in the crops of the motion
fields in Fig. 6.9e-h, where thin objects such as the hand and the arms of the
girl, as well as the different apples falling out of the crate, create a multitude
of motion discontinuities in close proximity, which lead to wrongly mapped
motion in the BOA-TFI approach.

6.3 Texture Optimizations

The last step of FOA-TFI is to use the mapped motion fields M̂b→a and M̂b→c,
together with disocclusion masks Ŝb→a and Ŝb→c, to bidirectionally interpolate
the target frame f̂b, as detailed for BOA-TFI in (4.12) of Sect. 4.4. Fig. 6.10a
shows an example of an interpolated frame; as can be seen in Fig. 6.10d,
there can be visible artefacts around moving objects. In the following, we
propose two optimizations on the texture that mitigate these problems. It
is worth noting that the proposed methods could be readily applied to the
BOA-TFI procedure; however, since similar improvements can be expected in
either method, we will focus on FOA-TFI.

6.3.1 Selective Wavelet Coefficient Attenuation (SWCA)

At disocclusion boundaries, the upsampled frame interpolated using the
occlusion-aware frame interpolation method of (4.12) can have problems; the
sudden transition from uni- to bidirectional prediction can lead to artificial
boundaries in places where the illumination changes between the two refer-
ence frames. We use Fig. 6.11 to illustrate this problem, where we focus on a
disoccluded region of the “Bandage 1” sequence.

We observe that neither of the motion-compensated reference frames fa→b
and fc→b is expected to contain such a transition boundary in the texture
data. In the Fig. 6.11b, we show a crop of the HH0 band, where no large
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(a) FOA-TFI f̂b (b) FOA-TFI+W f̂
(W )
b (c) FOA-TFI+WO f̂

(WO)
b

(d) f̂b crop (e) f̂
(W )
b crop (f) f̂

(WO)
b crop

Figure 6.10: Example of the effects of the proposed texture optimizations. (a/d) show
the bidirectionally predicted target frame f̂b, where there is a significant illumination
change between the two reference frames in the disoccluded region. (b/e) show how the
selective wavelet coefficient attenuation (+W) successfully creates a smoother transition
from uni- to bidirectional prediction; (c/f) show the joint effect of the optical blur synthesis
(+WO), which creates a smooth transition around moving objects, without smoothing
any other part of the image.

wavelet coefficients are present around the transition boundary from uni- to
bidirectional prediction (red circle in the figure). In Fig. 6.11c, we show the
same region of the blended frame f̂b, where there are large coefficients around
the transition boundary, which are visible as a sharp transition in the predicted
target frame, as shown in Fig. 6.11d.

Fig. 6.11e shows the effect of the proposed SWCA, which is obtained by
limiting the magnitude of the wavelet coefficients in the target frame f̂b, based
on the wavelet decomposition of the motion compensated reference frames.
We use the 5/3 wavelet transform, but the approach could be used with other
(non-wavelet) transforms. For our work, the wavelet transform is particu-
larly interesting for its useful connections with coding. The advantage of the
proposed method over simple smoothing in the spatial domain is that it effec-
tively realizes an adaptive smoothing filter size depending on the visibility of
the transition boundary.

We use f̄j to denote the 2D-wavelet decomposition of frame fj , and use
f j [k] to access a specific wavelet coefficient k, where k collects information
about level, subband, and spatial position in the transform. Furthermore, let
Ši→j be a rearranged disocclusion mask Ŝi→j , so that the locations k in Ši→j [k]
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(a) 1 level of 2D-DWT of f̂a→b

(b) Crop of the HH0 of fa→b (c) Crop of the HH0 of fb without SWCA

(d) Crop of f̂b (without SWCA) (e) Crop of f̂
(W )
b (with SWCA)

Figure 6.11: Illustrative example for the SWCA procedure. (a) shows a 1-level 2D-
DWT of the warped reference frame f̂a→b; (b) and (c) show crops of the HH0 band of
fa→b and f b without SWCA, respectively. The red circle indicates the large magnitude
coefficients introduced by averaging two warped frames with different illumination, which
leads to a visible boundary at the transition boundary from uni- to bidirectional prediction
in (d). (e) shows the reconstructed frame where the proposed SWCA has attenuated
the coefficients in the red circle, resulting in a much smoother transition from uni- to
bidirectional prediction.
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correspond to the appropriate locations m in Ŝi→j [m]. Then, we define

τ [k] = max
(
Šb→a[k]|fa→b[k]|, Šb→c[k]|f c→b[k]|

)
. (6.14)

That is, τ [k] represents the larger (visible) wavelet coefficient of the wavelet
decomposition of the motion compensated left and right reference frames,
evaluated at k. Then, f b is computed as follows:

f
(W )
b [k] =

 τ [k] · sgn(f b[k]) τ [k] ≤ |f b[k]|

f b[k] otherwise
. (6.15)

We then simply synthesize f (W )
b to obtain f̂

(W )
b . The effect this wavelet coef-

ficient attenuation has in the spatial domain can be seen in Fig. 6.10e, where
the sharp transition boundary from uni- to bidirectional prediction is much
less visible; more examples are provided in Figs. 6.12 and 6.13.

What is particularly appealing about this selective wavelet coefficient at-
tenuation is that it is applied globally to the entire frame, and there are no
heuristics or parameters involved.

6.3.2 Optical Blur Synthesis

The SWCA presented in the previous section is effective at smoothing tran-
sitions from uni- to bidirectional prediction in regions with large illumination
changes. Another visually disturbing artefact that can arise in the proposed
scheme is that overly sharp transitions are created at moving object bound-
aries in the texture domain; this is because the inverted and inferred motion
fields (M̂b→a and M̂b→c, respectively), are discontinuous around moving object
boundaries. This effectively cuts out the foreground object and pastes it in the
target frame. In practice, the transition in the reference frames is smoother
due to optical blur, which is an inevitable aspect of the imaging process. The
wavelet-based attenuation strategy described above cannot resolve this prob-
lem because the unnaturally sharp discontinuities are expected to be present
in both of the motion compensated reference frames.

We propose a simple yet effective way of synthesizing optical blur, which
further improves the visual quality of the interpolated target frames, which
uses the divergence of the target motion field M̂b→c as an indication of moving
object boundaries. A Gaussian blur filter is applied to all pixels where the
absolute value of the divergence of the motion field is larger than a certain
threshold θ; the interpolated target frame with optical blur synthesis, denoted
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(a) Bandage 1 f̂4.5 (b) Crops FOA-TFI f̂4.5

(c) Crops FOA-TFI+W f̂
(W )
4.5 (d) Crops FOA-TFI+WO f̂

(WO)
4.5

(e) Crops M̂4.5→4 (f) Crops M̂4.5→5

Figure 6.12: Different stages of the proposed FOA-TFI method with texture optimization
on a frame from the “Bandage 1” sequence. (a) shows the interpolated frame using
FOA-TFI+WO. (b-d) show crops of the interpolated frames obtained using the proposed
FOA-TFI method with no texture optimization, selective wavelet coefficient attenuation
(+W), and additional optical blur synthesis (+WO), respectively. (e/f) show crops of the
same region of the backward and forward pointing motion fields.

as f̂ (WO)
b , is then obtained as:

f̂
(WO)
b =

 (f̂ (W )
b ∗ h)[m] |div(M̂b→c[m])| > θ

f̂
(W )
b otherwise

, (6.16)

where h[m] is a two-dimensional Gaussian kernel. In our experiments, we
found that θ = 5 provides good results. Fig. 6.10c, and perhaps more obvi-
ously Fig. 6.12d and Fig. 6.13d, provide examples of the benefits of the pro-
posed optical blur synthesis. In the next section, we provide a more detailed
discussion of the impact of the proposed texture optimizations.

6.3.3 Impact of Texture Optimizations

In this section, we assess the impact of the two proposed texture optimizations,
namely the selective wavelet coefficient attenuation (FOA-TFI+W) described
in Sect. 6.3.1, as well as the additional motion blur synthesis (Sect. 6.3.2), re-
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(a) Kimono1 f̂5 (b) Crops FOA-TFI f̂5

(c) Crops FOA-TFI+W f̂
(W )
5 (d) Crops FOA-TFI+WO f̂

(WO)
5

(e) Crops M̂5→4 (f) Crops M̂5→6

Figure 6.13: Different stages of the proposed FOA-TFI method with texture optimization
on a frame from the “Kimono1” sequence. (a) shows the interpolated frame using FOA-
TFI+WO. (b-d) show crops of the interpolated frames obtained using the proposed FOA-
TFI method with no texture optimization, selective wavelet coefficient attenuation (+W),
and additional optical blur synthesis (+WO), respectively. (e/f) show crops of the same
region of the backward and forward pointing motion fields.

ferred to as FOA-TFI+WO. We remind the reader that FOA-TFI+W is used
to smooth transitions from uni- to bidirectional prediction, where illumination
changes between the two reference frames can add artificial high-frequency
content. The optical blur synthesis aims at smoothing the transition from
foreground to background texture at moving object boundaries. In the follow-
ing, we first qualitatively and then quantitatively evaluate the impact of the
proposed texture optimizations.

128



6.3 Texture Optimizations

6.3.3.1 Visual Improvements

The proposed texture optimizations aim at improving the visual quality of
the interpolated frames. Fig. 6.12 illustrates the impact of the different steps
of the proposed texture optimizations on the “Bandage 1” sequence from the
Sintel dataset [109], which is a good example to illustrate the FOA-TFI+W
texture optimization, since there are significant illumination changes between
the two reference frames. One can see in Fig. 6.12b how the FOA-TFI with-
out texture optimization contains visually disturbing high-frequency content
at the transition point from uni- to bidirectional prediction. FOA-TFI+W
successfully creates a smoother transition by selectively attenuating the prob-
lematic large coefficients, without smoothing any of the correctly predicted
parts of the frame.

Fig. 6.13 shows an interpolated frame from the “Kimono1” sequence, where
the motion is estimated using the optical flow method described in [85]. The
“Kimono1” sequence is useful to illustrate the proposed optical blur synthe-
sis. Without texture optimization (Fig. 6.13b), the sharp transitions in the
inverted motion fields create a “cut-out” effect in the interpolated frame. This
can be seen around the head of the woman; in addition, as can be seen in
the motion field cops in Fig. 6.13e/f, there are different patches of background
motion, which create subtle artificial transitions in the interpolated frame.
For these regions, FOA-TFI+W has little impact. The optical blur synthesis,
which blurs the texture in regions of large motion divergence, is able to remove
these artefacts and create a much smoother transition.

6.3.3.2 Quantitative Impact of Texture Optimizations

In order to quantitatively evaluate the impact of the two texture optimizations
proposed in this chapter, we ran the TFI experiment on natural sequences as
presented in Sect. 4.4.3; that is, for each of the twelve video sets (see Sect. A.3),
we interpolated 10 frames, resulting in a total of 120 interpolated frames.

Table 6.1 shows the average per-sequence Y-PSNR obtained for FOA-
TFI without texture optimization (FOA-TFI), with SWCA enabled (FOA-
TFI+W), as well as with both SWCA and optical blur synthesis enabled
(FOA-TFI+WO); as an anchor point, we further replicate the results obtained
by BOA-TFI, which we presented in Sect. 4.4.3.

As mentioned earlier, the texture optimizations were designed primarily
to improve the visual quality of the interpolated frames. As the results in the
table show, the texture optimizations also improve in terms of Y-PSNR. It
is worth highlighting that in all tested sequences, the results monotonously
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Table 6.1: Quantitative evaluation of the impact of the proposed textured
optimizations on common natural test sequences. The table shows results for
FOA-TFI without texture optimizations (-), with enabled SWCA (+W), as well
as additional optical blur synthesis (+WO). As an anchor point, we further
replicate the results of the BOA-TFI [20] scheme (see Sect. 4.4). In parantheses
(·), we show the difference between the Y-PSNR of FOA-TFI+WO and the
respective method we compare it to (“-” means that the proposed FOA-TFI+WO
performs better, “+” means worse performance).
Bold indicates per-row best-performance.

Sequence BOA-TFI† [20] Proposed FOA-TFI†
- +W +WO

Cactus 33.63 (-0.68) 33.97 (-0.35) 34.13 (-0.18) 34.31
Kimono1 33.26 (-0.77) 33.65 (-0.38) 33.82 (-0.21) 34.03
Kimono2 40.94 (-0.69) 41.38 (-0.26) 41.39 (-0.24) 41.63
Rushhour 34.76 (-0.36) 34.95 (-0.17) 35.05 (-0.07) 35.12
Shields 36.55 (-0.03) 36.35 (-0.24) 36.41 (-0.17) 36.58
Shields 37.76 (-0.07) 37.82 (-0.01) 37.83 (-0.00) 37.83
Stockholm 37.84 (-0.12) 37.95 (-0.01) 37.96 (-0.00) 37.96
Park 39.51 (-0.59) 39.51 (-0.58) 39.68 (-0.41) 40.09
Parkrun 31.79 (-0.23) 31.99 (-0.03) 32.00 (-0.03) 32.03
Station2 43.61 (-1.33) 44.87 (-0.08) 44.94 (-0.00) 44.94
Mobcal 37.81 (-0.92) 38.64 (-0.08) 38.69 (-0.04) 38.73
Terrace 37.62 (-0.31) 37.93 (-0.00) 37.93 (-0.00) 37.93

Average 37.09 (-0.51) 37.42 (-0.18) 37.49 (-0.11) 37.60
† Motion fields estimated using MDP [85].

improve between FOA-TFI without texture optimizations, FOA-TFI+W, and
FOA-TFI+WO.

To conclude this section, we highlight the fact that the proposed motion-
centric approach to frame interpolation allows us to readily identify regions
that can benefit from selective smoothing of the predicted texture. This is
in stark contrast to block-based TFI methods, which all have some inherent
averaging applied to every pixel location of the upsampled frame.

6.4 Evaluation of TFI Performance

In this section, we provide a thorough evaluation of the performance of FOA-
TFI. Sect. 6.4.1 evaluates the method on a variety of common natural test
sequences, and compares the scheme to three state-of-the-art TFI methods,
as well as BOA-TFI. In Sect. 6.4.2, we “stress-test” the proposed method on
highly challenging synthetic sequences from the Sintel dataset (see Sect. A.2),
where the ground truth motion is known. We conclude the section with a
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Table 6.2: Quantitative comparison of FOA-TFI+WO with [95], [93], and [80], on
common natural test sequences. In parantheses (·), we show the difference between the
Y-PSNR of the proposed FOA-TFI+WO method and the respective method we compare
it to (“-” means that the proposed FOA-TFI+WO performs better, “+” means worse
performance). Results where the paired-samples t-test between FOA-TFI+WO and
the respective method yielded non-significant p-values (at a level of α = 0.01) are
highlighted in orange . Bold indicates per-row best performance.

Sequence Jeong [95] Veselov [93] Lu [80] FOA-TFI†
+WO

Cactus 33.15 (-1.17) 31.27 (-3.04) 34.12 (-0.19) 34.31
Kimono1 33.93 (-0.09) 33.40 (-0.63) 34.51 (+0.48) 34.03
Kimono2 39.97 (-1.67) 40.21 (-1.42) 39.51 (-2.12) 41.63
Rushhour 35.18 (+0.06) 34.93 (-0.19) 35.30 (+0.19) 35.12
Shields1 35.90 (-0.68) 35.10 (-1.48) 35.89 (-0.69) 36.58
Shields2 33.87 (-3.96) 35.58 (-2.24) 33.52 (-4.31) 37.83
Stockholm 36.59 (-1.37) 37.12 (-0.84) 35.85 (-2.11) 37.96
Park 38.29 (-1.80) 38.84 (-1.26) 38.74 (-1.36) 40.09
Parkrun 30.63 (-1.40) 30.97 (-1.06) 30.50 (-1.53) 32.03
Station2 41.10 (-3.84) 41.41 (-3.54) 40.54 (-4.41) 44.94
Mobcal 29.13 (-9.60) 34.75 (-3.98) 29.53 (-9.20) 38.73
Terrace 33.29 (-4.64) 34.22 (-3.71) 33.66 (-4.26) 37.93

Average 35.08 (-2.51) 35.65 (-1.95) 35.14 (-2.46) 37.60
† Motion fields estimated using MDP [85].

comparison of the timings of the different TFI methods tested, which chal-
lenges some of the current “preconceptions” about the use of optical flow for
TFI schemes.

6.4.1 Evaluation on Natural Sequences

In this section, we evaluate FOA-TFI on a variety of common natural test
sequences (see Sect. A.3), and compare the scheme both qualitatively and
quantitatively to three state-of-the-art TFI methods, as well as BOA-TFI.

6.4.1.1 Quantitative Results

In this section, we evaluate the TFI performance of FOA-TFI in terms of Y-
PSNR of the interpolated frames. To confirm the statistical significance of the
results, we conducted a paired-samples t-test to compare the Y-PSNR values of
the proposed FOA-TFI+WO method with each of the four other TFI methods.
There was a significant difference in the scores for FOA-TFI+WO and Jeong
et al. [95] (t(119) = 9.77), Veselov and Gilmutdinov [93] (t(119) = 14.87), Lu
et al. [80] (t(119) = 9.58), and BOA-TFI [20] (t(119) = 11.66); in all cases,
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(f) Shields (pan)

Figure 6.14: Quantitative comparison of interpolated frame quality for the first half of the
natural test sequences. Plots show the Y-PSNR of each individual interpolated frame for
the proposed FOA-TFI method, as well as Jeong et al. [95], Veselov and Gilmutdinov [93],
Lu et al. [80], and our previously proposed BOA-TFI scheme [20].

p < 0.001, meaning high significance of the results. Table 6.2 shows the Y-
PSNR values of the proposed method along with the three state-of-the-art
TFI schemes. In the table, results that were statistically non-significant at
an α value of 0.01 are highlighted in orange. With respect to BOA-TFI (see
Table 6.1), the results were significant for all but the “Shields1” and “Shields2”
sequences.
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Figure 6.15: Quantitative comparison of interpolated frame quality for the second half of
the natural test sequences. Plots show the Y-PSNR of each individual interpolated frame
for the proposed FOA-TFI method, as well as Jeong et al. [95], Veselov and Gilmutdi-
nov [93], Lu et al. [80], and our previously proposed BOA-TFI scheme [20].

To provide further insight into the quantitative results, Figs. 6.14 and 6.15
show plots of the Y-PSNR values on all tested frames individually for each of
the 12 sequences. One can see that on most sequences, the proposed method
constantly outperforms the others. The only statistically significant result
where FOA-TFI performs worse than existing state-of-the-art is Lu et al.’s
[80] result on the “Kimono1” sequence. In this sequence, we observe that the
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motion boundaries between adjacent motion fields – estimated using MDP-
flow [85] – do not always align, which troubles the motion-discontinuity based
method for resolving double mappings. This highlights the importance of
tailoring motion estimation schemes to the proposed scheme, which should be
able to further improve the performance of the proposed method.

6.4.1.2 Qualitative Evaluation

While Y-PSNR comparisons are useful to summarize results, it is important
to also look at the visual quality of the interpolated frames; for this reason,
Figs. 6.16 and 6.17 take a closer look at two sequences.

All TFI methods investigated produce good results; however, FOA-TFI
in general shows superior performance. We observe that most comparisons
in the literature are performed on sequences at CIF (352 × 288) resolution;
furthermore, most of the standard test sequences are to varying degrees af-
fected by motion blur. The sequences we use were recorded using high-quality,
high-framerate cameras, and hence the individual frames contain much more
high-frequency content. Block-based methods usually employ a variant of
OBMC, which tends to oversmooth the interpolated frames, resulting in sig-
nificant blurring of the overall texture; in Fig. 6.16, this can be seen in highly
textured regions such as the text on the card of the Cactus sequence in the
second row. Lu et al.’s [80] method seems to apply a particularly aggressive
low-pass filter, which can explain the significant drop in Y-PSNR in some of
the sequences.

Another important factor relates to the handling of regions around moving
objects, as highlighted in the estimated disocclusion masks in Fig. 6.16c and
Fig. 6.17c; such regions are only visible from one reference frame, and hence
should only be predicted from the frame where they are visible. Besides our
TFI methods, only [80] explicitly handles occluded regions. The quality of the
proposed occlusion handling can be appreciated in a number of sequences, but
is most visible in the “Park” sequence in between the two trees, as well as the
“Cactus” sequence, where the “Q” is properly interpolated by our method;
both [95] and [93] contain double edges, and [80] severely over-smooths this
region (see Fig. 6.16h).

6.4.2 Evaluation on Synthetic Sequences

In the previous sections, we have evaluated the performance of FOA-TFI with
estimated motion fields from a state-of-the-art optical flow method. Since the
quality of these motion fields is out of our control, we find it useful to provide
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(a) Cactus f9 (b) Crops of Cactus f9

(c) Estimated disocclusion mask (d) Estimated M̂9→10

(e) FOA-TFI+WO f̂
(WO)
9 (f) Jeong et al. [95] f̂9

(g) Veselov et al. [93] f̂9 (h) Lu et al. [80] f̂9

Figure 6.16: TFI comparison on “Cactus” sequence. The first shows the ground truth
frame (a), as well as crops of the ground truth frame (b); (c) shows the estimated
forward and reverse disocclusion masks (cyan and yellow, respectively), and (d) shows the
(colour-coded) mapped forward motion field M̂b→c. (e-h) show crops of the proposed
FOA-TFI+WO (with both texture optimizations), Jeong et al. [95], Veselov et al. [93],
and Lu et al. [80], respectively.
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(a) Park f149 (b) Crops of Park f149

(c) Estimated disocclusion mask (d) Estimated M̂149→150

(e) FOA-TFI+WO f̂
(WO)
149 (f) Jeong et al. [95] f̂149

(g) Veselov et al. [93] f̂149 (h) Lu et al. [80] f̂149

Figure 6.17: TFI comparison on “Park” sequence. The first shows the ground truth
frame (a), as well as crops of the ground truth frame (b); (c) shows the estimated
forward and reverse disocclusion masks (yellow and cyan, respectively), and (d) shows the
(colour-coded) mapped forward motion field M̂b→c. (e-h) show crops of the proposed
FOA-TFI+WO (with both texture optimizations), Jeong et al. [95], Veselov et al. [93],
and Lu et al. [80], respectively.
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(a) Cave 4 estimated M̂19.5→20 (b) Disocclusion Mask Ŝ19.5→19 ∪ Ŝ19.5→20

(c) Crops of estimated M̂19.5→20 (d) Crops of interpolated frame f̂
(WO)
19.5

(e) Bamboo 2 estimated M̂29.5→30 (f) Disocclusion Mask Ŝ29.5→30 ∪ Ŝ29.5→30

(g) Crops of estimated M̂29.5→30 (h) Crops of interpolated frame f̂
(WO)
29.5

(i) Market 2 estimated M̂19.5→20 (j) Disocclusion Mask Ŝ19.5→19 ∪ Ŝ19.5→20

(k) Crops of estimated M̂19.5→20 (l) Crops of interpolated frame f̂
(WO)
19.5

Figure 6.18: TFI results on challenging synthetic sequences from the Sintel dataset.
(a/e/i) show the estimated forward motion fields produced by our method; (b/f/j) show
the union of the estimated forward and reverse disocclusion masks, where yellow means
not visible in fa, cyan means not visible in fc, and red are regions that are not visible in
either reference frame. (c/g/k) show crops of the estimated motion fields, and (d/h/l)
the interpolated target frames produced by FOA-TFI+WO.
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additional results on a challenging set of computer-generated sequences, where
the ground truth motion is known. Fig. 6.18 shows the forward inferred motion
field (M̂b→c), the estimated forward and reverse disocclusion mask as produced
by our method (Ŝb→a ∪ Ŝb→c), as well as crops of the interpolated frame f̂b.

The even rows in the figure show the high quality of the warped motion
fields for these very challenging sequences, in particular around moving ob-
jects; the disocclusion masks estimated by FOA-TFI expose the amount of dis-
occlusion that arises between two consecutive frames of the various sequences.
In the odd rows, we show crops of the motion fields in challenging parts, to-
gether with the corresponding regions of the interpolated frames produced by
FOA-TFI. The high-quality results are a culmination of high quality warped
motion fields, high-precision disocclusion masks, as well as the two texture
optimizations. Full length sequence videos on these and many more sequences
can be found on the accompanying website3.

6.4.3 Processing Times

In this section, we report on the processing times of FOA-TFI, and compare it
with [95], [93], and [80], as well as BOA-TFI. We note that none of the methods
are optimized for time, and, with the exception of BOA-TFI, the timings
were obtained on different machines, kindly provided by the authors of the
respective TFI method. The relevant specifications of the testing machines,
as well as the average per-frame processing time, are summarized in Table 6.3;
we further provide the average PSNR for every method tested, as reported in
Table 6.2.

We split up the processing times for the motion estimation (ME) part and
the frame interpolation (FI) part, and note that our contribution lies solely
in the FI part. As mentioned before, both FOA-TFI and BOA-TFI can be
used with any optical flow method (ME part) that produces sharp disconti-
nuities around moving objects; in this thesis, we primarily used motion detail
preserving (MDP) optical flow [85] to estimate motion fields, which produces
very high-quality optical flow fields, at the expense of comparatively high pro-
cessing times. To give some more insight into the impact of different optical
flow estimators, we further ran the experiments using Revaud et al.’s [87] EPIC
flow algorithm, using the default parameters proposed by the authors.

One can observe that EPIC flow [87] runs about 50 times faster than MDP
[85], and 4 times faster than the fastest competitor [93], while still outperform-
ing current state-of-the-art methods by more than 1dB. As these results show,

3http://ivmp.unsw.edu.au/˜dominicr/foa_tfi.html
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Table 6.3: Comparison of processing times of FOA-TFI with state-of-the-art TFI schemes.
We show the average per-frame processing time (in sec) on all the frames tested in
Sect. 6.4.1, split up in motion estimation (ME) and frame interpolation (FI), as well as
total processing time. We further provide the CPU and amount of RAM of the machines
used to obtain the results, as well as the average Y-PSNR obtained on the whole test set.
Bold indicates best performance.

Method CPU RAM PSNR ME FI Total

Jeong [95] 2.8GHz 8GB 35.1 410.2 498.9 909.1
Veselov [93] 2.6GHz 8GB 35.7 32.4 2.1 34.5
Lu [80] 2.4GHz 6GB 35.1 96.2 18.1 114.3
BOA-TFI [20]† 3.2GHz 8GB 37.1 355.4 8.2 363.6
FOA-TFI+WO†
FOA-TFI+WO? 3.2GHz 8GB 37.6

36.7
355.4
7.0

1.8
1.8

357.2
8.8

† Motion fields estimated using MDP [85].
? Motion fields estimated using EPIC flow [87].

block-based TFI methods need a lot of constraints and optimizations in or-
der to be able to perform high-quality TFI, which in the end turn out to be
slower than state-of-the-art optical flow methods. Furthermore, as manifested
by our results, optical flow fields can be expected to provide better results
than “fixed-up” block-based fields. Compared to BOA-TFI, one can see that
the frame interpolation time of FOA-TFI is over 4 times shorter than that of
BOA-TFI, which is mostly due to the fact that there is only one motion field
inversion involved in FOA-TFI, compared to three inversions in BOA-TFI.

Motion estimation left aside, the proposed FI method spends most of the
time mapping triangles from one frame to another, as part of the motion
inversion and inference process. In the current implementation, the triangle
size is fixed to 1 × 1. In the next chapter, we propose a mesh sparsification
algorithm, which creates larger triangles in regions of smooth motion. As we
will see, this significantly reduces the processing time of the TFI procedure,
while having no practical impact on the interpolation quality.

In existing video codecs, the motion has to be (re-)estimated at the decoder
for TFI purposes, which constrains the quality of motion fields. This is in
stark contrast to the highly scalable video compression systems we propose
in this thesis, which employ TFI as part of the temporal transform. Hence,
at the decoder, high-quality “physical” motion can be employed for frame
upsampling purposes, which significantly reduces the processing time of the
TFI framework. In the next section, we outline how FOA-TFI can be extended
to a highly scalable video compression system.
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(a) Forward-only hierarchical anchoring of motion (FOHA).

(b) Bidirectional hierarchical anchoring of motion (BIHA).

Figure 6.19: Comparison of the way the coded motion fields are “anchored” in (a) FOHA
and (b) BIHA.

6.5 Outline of a FOHA Video Compression System

The focus of this chapter was on three modifications of the BOA-TFI scheme
to further improve the quality of the interpolated frames. We have performed
an extensive comparison of the TFI performance of both FOA-TFI and BOA-
TFI, and shown how the proposed changes positively impact the interpolation
quality. At this point, a logical next step would be to incorporate the FOA-TFI
scheme into a highly scalable video compression scheme, similar to what we
have done in Chapter 5, where BOA-TFI formed the essential building block
of the BIHA scheme; we call this scheme forward-only hierarchical anchoring
(FOHA).

Since the incorporation requires quite some effort from an implementation
point of view, we decided not to pursue this undoubtedly promising direction.
In this section, instead, we give an outline of what a video compression system
based on FOA-TFI could look like, and briefly discuss anticipated advantages
over the BIHA scheme. We also highlight problems that would be present in
the FOHA scheme, which lead us to the proposal of a third motion anchoring
strategy, which we present in the next chapter.

Fig. 6.19 shows the FOHA scheme; for comparison, we also show the BIHA
scheme. As can be seen in the figure, in the FOHA scheme, as its name sug-
gests, all coded motion fields are pointing forward. We have already extensively
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discussed the advantages of FOA-TFI over BOA-TFI, namely guaranteed tem-
poral consistency of the warped motion fields, more robust disambiguation of
disoccluded regions and improved disocclusion region handling. Furthermore,
the proposed texture optimizations can also be expected to reduce the predic-
tion residual and hence improve the compression performance of the FOHA
scheme. One aspect that is particular to the compression scenario is the fact
that the inferred motion fields are anchored – and hence coded – at the target
frame. As mentioned in Sect. 5.1.2, motion prediction residuals for inferred
motion fields can be expected to be non-zero only in regions that get dis-
occluded; as discussed in Sect. 5.6, they could even be forced to zero outside
disoccluded regions. Since the target frame lies at roughly half the motion tra-
jectory between the two reference frames, it can be expected that the region
of disocclusion is roughly half the size when compared to the BIHA scheme,
where the inferred motion is anchored at the other reference frame. As a re-
sult, one can expect that the cost of coding inferred motion residuals is further
reduced.

The main issue pertaining to the FOHA scheme is that since motion fields
are coded at different frames, small rounding errors are inevitable. In the next
chapter, we propose a third reference-based motion anchoring strategy, where
all motion information is anchored at the first frame of the GOP, and hence
does not introduce rounding-errors.

6.6 Chapter Summary

In this chapter, we proposed three modifications to the BOA-TFI scheme pre-
sented in Chapter 4. First, we proposed a more robust measure of motion
discontinuity based on the divergence of motion fields. The “so-called” DFLM
allows us to handle regions of complex geometry better than with the binary
motion discontinuity representation induced from breakpoints. Second, we
flipped the anchoring of the inferred motion fields; we coined the resulting
TFI scheme FOA-TFI. A main advantage of FOA-TFI over BOA-TFI is that
it needs only one motion field inversion, as opposed to three motion inver-
sions in the case of BOA-TFI. This reduces the computational complexity by
a factor of 3. At the same time, it guarantees that the warped forward and
backward pointing prediction fields are geometrically consistent, which further
improves the prediction quality of the proposed scheme. Lastly, we proposed
two effective texture optimizations, which selectively smooth regions where the
scheme can be expected to create artificial high frequencies. A comprehensive
experimental evaluation of the FOA-TFI scheme on both natural and syn-
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thetic sequences showed the high performance of the proposed TFI framework
compared to state-of-the-art TFI methods.

While the focus of this chapter was on frame interpolation, which is the
essential building block of the proposed highly scalable video compression
scheme, we outlined a potential scalable video coder, which we referred to as
FOHA. In the next chapter, we present a third, further simplified reference-
based motion anchoring strategy, which has a number of highly interesting
properties for (scalable) video compression.
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7 Base-Anchored Motion
(BAM)

In the previous two chapters, we have presented the BIHA and the FOHA
scheme for highly scalable video compression. Both these schemes employ
reference-based hierarchical motion field anchorings; that is, at each level of the
temporal hierarchy, motion fields are predictively coded. For this, motion fields
from coarse levels are mapped to the same or finer temporal levels in order
to predict motion information. We have seen that in FOHA, the geometrical
consistency of the mapped motion fields can be guaranteed. However, there
is no way of ensuring that multiple interpolated frames are interpolated in a
temporally consistent way. Furthermore, as observed at the end of Sect. 6.5,
the problem is that the mapped motion information in general does not fall
onto integer grid locations, and hence rounding errors are inevitable.

In this chapter, we explore a base-anchored motion (BAM) scheme,1 which
addresses the aforementioned issues. In this motion anchoring strategy, all
coded motion information is anchored at one base frame, which is the first
frame of the GOP. Fig. 7.1 shows the BAM scheme, together with the other
two motion anchoring strategies proposed in this thesis. In the previous an-
choring strategies, the CAW procedure we use to map motion information
from one frame to another uses a fixed cell size of 1 × 1; as we mentioned
earlier, the cell size could be increased in regions of smooth motion. How-
ever, with hierarchically anchored motion as employed in BIHA and FOHA,
such motion sparsification has to be performed at various frames, which is
both computationally less efficient, and, perhaps more importantly, damages
the geometrical (and temporal) consistencies we try to enforce. In the BAM
framework, motion sparsification makes more sense, since all motion informa-
tion is described in the same grid; we present a simple mesh sparsification
algorithm in Sect. 7.2.

In the BAM scheme, the base frame holds motion information linking it
with any other frame of the GOP, as depicted in Fig. 7.1c. Combined with
the motion inference operations presented in earlier chapters, temporally con-
sistent motion information can be readily composed between any two frames

1The work introducing the BAM scheme is accepted for publication at the IEEE Inter-
national Workshop on Multimedia Signal Processing (MMSP) [25].
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(a) Bidirectional hierarchical anchoring of motion (BIHA).

(b) Forward-only hierarchical anchoring of motion (FOHA).

(c) Base-Anchored Motion (BAM).

Figure 7.1: Comparison of the three motion field anchoring strategies investigated in
this thesis. As before, arrows indicate motion fields that are coded. One can see how in
BAM, all coded motion fields are anchored at the first frame of the GOP, which enables
a very compact representation of the motion.

of the GOP.2 Another advantage of the centralized motion organization is
that motion information can be more compactly represented. In Sect. 7.3,
we explore the compact motion representation by adding higher-order mo-
tion models to the framework, which are able to better describe the “true”
trajectory of objects through the spatio-temporal volume.

It is important to highlight the fact that while the motion anchoring is no
longer hierarchical, the temporal transform can still be performed in a hierar-
chical way. That is, texture information other than the one from the coarsest
temporal level can be used to predict the target frames at finer temporal lev-
els. For the initial exploration of BAM in this thesis, however, we use a “flat”
prediction structure, as depicted in Fig. 7.1c; that is, any target frame of the

2The evaluation of temporal consistency in this thesis is limited to qualitative results,
since there exists no good quantitative assessment tool.
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GOP is predicted from only the two coarsest level frames (i.e., the first and the
last frame of the GOP). In Sect. 7.4, we show how the BAM scheme with the
flat prediction structure can be integrated into HEVC. That is, we use BAM to
perform the motion-compensation, and use the highly optimized compression
framework offered by HEVC to code all the texture residuals. In the following,
we use the example of TFI to show how the BAM scheme works.

7.1 High Framerate Upsampling with BAM

In this section, we present the BAM framework using the application of high
framerate upsampling. We start with an overview of the scheme, which is
guided by Fig. 7.2, and then present the fundamental changes with respect to
the FOA-TFI scheme. Input to the method are two reference frames f0 and f1,
where we normalized the time interval for ease of notation. Furthermore, the
scheme requires at least the motion field describing the trajectory from f0 to
f1, denoted as M0→1.3 For the remainder of this chapter, we use u0→t(m) to
denote a motion vector which links a location m in f0 with its corresponding
location in ft. As we shall see in Sect. 7.3, the BAM framework facilitates the
incorporation of higher order motion models. We hence further use u(n)

0→t(m) to
denote a motion vector following an nth-order motion model, and refer to the
framework that employs nth-order motion as BAM(n). For ease of notation,
we drop the model order superscript whenever the distinction between model
orders is not necessary.

From the two reference frames and a motion description between the two,
the aim is to interpolate frames ft at the normalized time instance t ∈ [0, 1]
in between the two reference frames f0 and f1; for example, the standard case
of doubling the framerate that is commonly considered in the literature is ob-
tained by setting t = 0.5. We highlight that the proposed framework can be
used for arbitrary upsampling factors, where the centralized motion organi-
zation allows us to make temporally consistent decisions for all interpolated
frames.

In the first step, the base motion field M0→1 is partitioned into a base
mesh B0, which holds a collection of K vertices {V k

0 }, k ∈ {0,K − 1}, each of
which holds motion vectors {u0→t(V k

0 )} “linking” f0 with any ft we wish to
interpolate (under constant motion assumption). In addition, the vertices hold

3As in the methods presented in the previous chapters, the quality of the proposed TFI
scheme depends on the quality of the input motion fields. In particular, the motion fields
need to have sharp discontinuities around moving object boundaries; this is because we
use motion discontinuity information to reason about foreground objects in order to resolve
double mappings and disoccluded regions.
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Figure 7.2: Overview of the proposed BAM framework. Input to the method are two
reference frames f0, and f1, and a motion field M0→1 between the two reference frames.
We propose a triangular mesh sparsification algorithm, which reduces the computational
complexity of the subsequent motion mapping operations. The base mesh B0 is mapped
to the right reference frame, where all disoccluded regions are observed. These are then
mapped back to the left reference frame, where they form a background motion layer.
Mapping the mesh to any intermediate target frame ft creates temporally consistent mo-
tion in disoccluded regions. Using reasoning about motion boundaries, we resolve regions
in ft where multiple triangles overlap. In the last step, ft is bidirectionally predicted from
both reference frames; regions that are only visible in one reference frame are detected
and unidirectionally predicted.
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Figure 7.3: Illustration how triangles of the base mesh and mapped meshes are linked
via motion vectors. Dashed red arrows show base anchored motion, whereas solid green
arrows show mapped mesh motion for Mt, which links each vertex of the mesh with the
preceding and succeeding reference frame.

motion vectors for the special case of t = 1, which links f0 with f1. These
vertices are connected to form triangles, whose affine motion approximates
the underlying motion field. In the extreme case, each integer location of the
motion field gets assigned a vertex, which results in triangles of size 1×1; this
is essentially what happened in the CAW procedure presented in Sect. 4.2.
However, while around moving object boundaries, even a triangle of size 1 ×
1 is not able to describe the motion because of the discontinuity, one can
expect that the affine motion from relatively large triangles is able to well
approximate the smooth motion within objects. In Sect. 7.2, we present a
mesh sparsification algorithm, which creates a mesh with variable triangle
sizes.

In the proposed scheme, we also use the concept of a mapped mesh Mt,
which is obtained by mapping the base mesh B0 to frame ft. The main dif-
ference between a mapped mesh and the base mesh are the motion vectors
their vertices hold: the mapped mesh contains vertices whose motion vectors
ut→0(V k

t ) and ut→1(V k
t ) link it with both the preceding and the succeeding

reference frames f0 and f1, respectively; this is illustrated in Fig. 7.3. We come
back to how motion vectors in mapped meshes are assigned in Sect. 7.1.1. An
important difference to the anchoring schemes presented in the earlier chap-
ters is that the base anchoring allows us to establish links with triangles; that
is, each triangle of the mesh is associated with a triangle identifier (TID),
which makes it possible to keep track of where the triangles map through the
spatio-temporal volume. We will show in Sect. 7.1.4 how this information can
be used to create visibility masks that inform which triangles are visible in
each of the reference frames.

147



Chapter 7. Base-Anchored Motion (BAM)

Setting t = 1, we map the base mesh from f0 to f1; the importance of the
obtained M1 is that it reveals regions that get disoccluded between the two
reference frames. Those are the regions for which affine interpolation results in
a “non-physical” motion vector assignment. In the case of frame upsampling
factors larger than two (i.e., more than one frame is interpolated between any
pair of reference frames), it is particularly important that temporally consistent
motion is assigned in such regions. In the proposed scheme, this is achieved by
mapping the disoccluded regions back to the base mesh B0, which essentially
creates local background motion layers. The purpose of these local background
layers is that if mapped to intermediate frames ft in between the two base
frames, temporally consistent motion will be assigned in disoccluded regions
for varying values of t; this procedure is explained in more detail in Sect. 7.1.2.

In the mapped mesh Mt, triangles overlap in regions where a foreground
object moves on top of a background object. Like in FOA-TFI, we use the
DFLM (second row of Fig. 7.2) to resolve such double mappings. Using a
triangle identifier (TID) compatibility check to identify regions that are not
visible in either of the reference frames, we are able to switch from bidirectional
to unidirectional prediction of the interpolated target frame(s) ft in regions
that are only visible in one of the reference frames. In the following, we explain
the main changes to the framework presented in the previous chapter in more
detail.

7.1.1 Affine Mesh Warping

We now describe how the base mesh B0 is mapped to any normalized time
instance t ∈]0, 1] in between the two reference frames f0 and f1, where it
will form the mapped mesh Mt. For the description of the mapping process,
we focus on how an individual vertex V k

0 is mapped to the target frame;
the mapped vertices can then be connected together to form triangles, which
completely cover the target frame. Motion M̂

(n)
t→0 and M̂

(n)
t→1, which relates ft

with its preceding and succeeding reference frame f0 and f1, respectively, can
then be obtained through affine interpolation of the motion vectors u(n)

t→0(V k
t )

and u(n)
t→1(V k

t ), respectively.

We use u(n)
0→t(V k

0 ), derived from an nth-order motion model as described
in Sect. 7.3, to map V k

0 to the target frame; that is,

V k
t = V k

0 + u(n)
0→t(V k

0 ). (7.1)

Negating its motion yields the motion linking the target frame with the pre-
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7.1 High Framerate Upsampling with BAM

ceding reference frame f0:

u(n)
t→0(V k

t ) = −u(n)
0→t(V k

0 ). (7.2)

From u(n)
0→1(V k

0 ) and u(n)
0→t(V k

0 ), we “forward infer” the motion vector
u(n)
t→1(V k

t ):
u(n)
t→1(V k

t ) = u(n)
0→1(V k

0 )− u(n)
0→t(V k

0 ), (7.3)

which links the vertices between the target frame and the succeeding reference
frame f1. As in the other two proposed motion anchoring schemes, u(n)

t→1(V k
t )

is composed of motion vectors u0→1(V k
0 ) and u(n)

t→0(V k
t ), which guarantees

that u(n)
t→0(V k

t ) and u(n)
t→1(V k

t ) point to the same geometrical location in f0 and
f1. In addition, the central motion organization enables to make temporally
consistent motion assignments between the set of interpolated target frames
{ft}.

One can identify the motion inversion (7.2) and forward inference (7.3)
motion operations that are used in the FOA-TFI scheme. In contrast to FOA-
TFI, where triangles were individually mapped and eventual ambiguities were
resolved “on the spot”, here, all vertices of the base mesh are mapped to
form the mapped mesh Mt, and only then regions of disocclusion and double
mappings are handled. This opens up interesting optimization operations in
the future, such as better (global) handling of disoccluded regions.

In the mapped meshMt, on the leading side of moving objects, there will
be regions where foreground triangles overlap with background triangles. Fur-
thermore, in regions on the trailing side of objects in motion (disocclusion),
the affine interpolated motion between foreground and background vertices is
non-physical. In Sect. 7.1.2, we show how to assign more “physical” and tem-
porally consistent motion in disoccluded regions; in Sect. 7.1.3, we explain how
the foreground triangle can be identified in regions where multiple triangles
overlap.

7.1.2 Temporally Consistent Motion in Disoccluded Regions

The higher the frame upsampling factor, the more critical a temporally con-
sistent interpolation in disoccluded regions becomes, since inconsistent motion
can lead to visually disturbing artefacts. Most existing TFI methods have no
way of guaranteeing consistent interpolation in disoccluded regions.

Using Fig. 7.4, where a rectangle moves on top of static background, we
now provide a high-level overview of the proposed procedure to assign tem-
porally consistent motion in disoccluded regions. The method is most easily
understood in the case of constant velocity motion, in which case the area of
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Chapter 7. Base-Anchored Motion (BAM)

(a) Base mesh B0 (b) M1

(c) B0 + BG (d) M0.75

Figure 7.4: High-level illustration of the proposed disocclusion region motion back-
propagation method. Mapping the base mesh B0 in to the next reference frame f1 reveals
all regions that get disoccluded between the two reference frames, indicated by the yellow
area in (b). Mapping these regions back to the left base frame creates a background
motion layer, as shown in (c), which guarantees temporally consistent motion assignments
in disoccluded regions for any target frame ft, e.g, t = 0.75 in (d).

disocclusion monotonically increases as objects transition from the preceding
reference frame f0 to the succeeding reference frame f1. This implies that map-
ping the motion from f0 to f1 exposes all regions that get disoccluded between
these two frames, as shown in Fig. 7.4b (yellow area). The idea of the pro-
posed method is to extrapolate (local) background motion in all disoccluded
regions, and then map these regions back to the left base frame f0, where they
are added to the base mesh B0. In doing this, we effectively generate a (set
of) local background motion layer(s), as illustrated in Fig. 7.4c.

During the affine mesh warping procedure (see previous section), the newly
created triangles forming the background layer(s) are mapped in the same
way as the “original” triangles of the sparsified mesh. In any region that is
not hit by any other triangle, the local background layer will guarantee that
temporally consistent motion is assigned, as illustrated in Fig. 7.4d.

We now provide more technical details how this background motion layer
can be created. We traverse all triangles of the base mesh B0. For each triangle
of size 1 × 1 (i.e., triangles that cross motion discontinuities), we identify
the edges that traverse a large (positive) divergence, which is indicative of
disocclusion; we call such edges disocclusion split edges (DSE). In the following,
we focus on one such DSE, noting that the same procedure is applied to
all DSEs. We illustrate the procedure using Fig. 7.5, which focuses on one
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7.1 High Framerate Upsampling with BAM

(a) M1 (b) Base mesh B0 + BG layer

Figure 7.5: Illustration of how disoccluding triangles are split up at motion discontinu-
ities. (a) on each split edge, two new vertices are created at the location of maximum
divergence (discontinuity); one gets assigned the motion of the background vertex, which
we label V SP LIT BG; similarly, V SP LIT F G gets assigned extrapolated motion from the
foreground vertex. Mapping these vertices back to B0 and connecting them to form
triangles creates a background motion layer.

disoccluding triangle (yellow).

First, the DSE is mapped to the right reference frame (Fig. 7.5a), where
we use motion divergence information at frame f1 to search for the location
of maximum divergence; this is where we set the split location. Following the
reasoning that motion discontinuities travel with the foreground object, we
label the vertex of the edge that is closer to the point of maximum divergence
(i.e., the motion discontinuity) as foreground V FG (green circle), whereas the
other one is labelled as background vertex V BG (red circle). Next, we cre-
ate two (disconnected) vertices at the split location; we label one of the two
newly created “split vertices” as V SPLIT BG (orange circle), and the other
one as V SPLIT FG (cyan circle). The motion assigned to these split vertices
is obtained by extrapolating the motion of the corresponding V BG and V FG

vertices in M1.

In the next step, the split vertices are mapped back to the left base mesh
B0. After all the “split edges” are split up and the split vertices have been
mapped back to B0, we form new triangles by connecting all V SPLIT FG and
V SPLIT BG vertices with the corresponding V FG and V BG, respectively, as
shown in Fig. 7.5b. Hypothetically connecting all adjacent V SPLIT BG to-
gether results in a delineation of the “end” of the disoccluded region, which
we call “DIS SPLIT BG” in the figure (yellow dashed line); together with the
“DIS BG” line, they outline the local background motion layer.
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Chapter 7. Base-Anchored Motion (BAM)

The method described above is only valid for BAM(1) (i.e., constant ve-
locity motion), since otherwise regions of disocclusion are not guaranteed to
increase monotonically between the two base frames f0 and f1. Extensions
to account for higher-order motion models are possible, but are out of the
scope of our initial investigation presented in this thesis. As the experimental
validation in Sect. 7.3.1 shows, even assuming constant velocity in disoccluded
regions is able to provide good results for BAM(2).

7.1.3 Computing a Foreground Triangle ID Map

In the mapped mesh Mt, triangles belonging to the foreground object can
overlap with triangles of the background object; this happens on the lead-
ing side of moving objects. The reasoning to resolve such double mappings
is the same as the one used in the FOA-TFI scheme, which we presented in
Sect. 6.2.3; the main difference is that whereas the double mapping disam-
biguation in FOA-TFI was done on a per-pixel basis, in BAM it is done per
triangle. That is, for each triangle that is overlapping with another triangle in
the mapped mesh, we sample its affine motion to obtain motion hypothesis 1.
A triangle potentially overlaps with multiple triangles; we sample the motion
of one of the intersecting triangles to create motion hypothesis 2. The identi-
fication of the foreground motion hypothesis is identical to the one presented
in Sect. 6.2.3. If the current triangle is found to be in the foreground, any
integer location m that is covered by the identified foreground triangle gets
assigned the corresponding triangle ID in a foreground TID map, denoted as
Ft. In the next section, we show how TIDs can be used to determine which
regions of the reference frames are visible in the target frame.

7.1.4 Assessing Visibility using Triangle ID Compatibility Check

We use TIDs to assess whether a particular location m is hidden in either of
the reference frames. This is done by a TID compatibility check, which tests
whether the identified foreground TID at location m in ft (i.e., Ft[m]) is the
same as the one if m is mapped to f0 or f1 using the affine interpolated motion
of the specific triangle. We store this valuable information in visibility masks
Ipt [m], where p = 0 or p = 1 is used to distinguish between the reverse and
forward visibility masks, respectively. More precisely,

Ipt [m] =

 1 Ft[m] = Fp
[
m + M̂t→p[m]

]
0 otherwise

, (7.4)
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Figure 7.6: Triangle ID checking is used to identify regions in the target frame ft that
are not visible in either of the reference frames f0 and f1; we refer to the text for details.

where M̂t→p[m] is the affine interpolated motion of the identified foreground
triangle that covers location m.

We illustrate the creation of the forward and reverse visibility masks with
the example shown in Fig. 7.6; in the figure, we use colours to differentiate
between TIDs. The yellow triangle sits in a region of forward disocclusion,
which means that it is not visible in the preceding reference frame f0. Applying
the (background) motion to a location m within the yellow triangle in ft maps
to a location where the foreground TID is different (orange triangle), and
hence it is marked as not visible in the reverse visibility mask (I0

t [m] = 0);
mapping the same location m forward, on the other hand, yields a positive
visibility check, and hence I1

t [m] = 1. The same reasoning can be applied for
reverse disocclusions (cyan region), where the TID compatibility check will
detect that in f1, the background triangle is covered by another triangle (e.g.,
the purple one), and hence mark this location as not visible in the forward
visibility mask I1

t . The black triangle sits on the foreground object, and hence
can be predicted from both sides, which is readily discovered by the proposed
method.

As in the other methods proposed in this thesis, we use a weighted bidirec-
tional prediction of the motion compensated reference frames f0→t and f1→t,
whenever the location m is visible in either both or neither of the reference
frames, and switch to unidirectional prediction whenever a location is only
visible in one reference frame.

f̂t[m] =

(1− t)f0→t[m] + tf1→t[m] I0
t [m] = I1

t [m]

fp→t[m] otherwise
, (7.5)

where p refers to the reference frame where the location m is visible.

153



Chapter 7. Base-Anchored Motion (BAM)

(a) Input f6 and f7, and 1
2 (f6 + f7)

(b) f̂6.25, f̂6.5, and f̂6.75 using BAM(1)

(c) f̂6.25, f̂6.5, and f̂6.75 using BOA-TFI

Figure 7.7: Comparison of the temporal consistency of BAM with BOA-TFI on the
“Ambush 6” sequence, for a framerate upsampling factor of 4. (a) shows the two input
frames, as well as the average of the two input frames, which gives some idea of the motion.
(b) shows the three interpolated frames produced by the proposed BAM method, and (c)
shows comparative results obtained using BOA-TFI.

154



7.1 High Framerate Upsampling with BAM

(a) Input f25 and f26, and 1
2 (f25 + f26)

(b) f̂25.25, f̂25.5, and f̂25.75 using BAM(1)

(c) f̂25.25, f̂25.5, and f̂25.75 using BOA-TFI

Figure 7.8: Comparison of the temporal consistency of BAM with BOA-TFI on the
“Bamboo 2” sequence, for a framerate upsampling factor of 4. (a) shows the two input
frames, as well as the average of the two input frames, which gives some idea of the motion.
(b) shows the three interpolated frames produced by the proposed BAM method, and (c)
shows comparative results obtained using BOA-TFI.
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(a) Input f16 and f17, and 1
2 (f16 + f17)

(b) f̂16.25, f̂16.5, and f̂16.75 using BAM(1)

(c) f̂16.25, f̂16.5, and f̂16.75 using BOA-TFI

Figure 7.9: Comparison of the temporal consistency of BAM with BOA-TFI on the
“Market 2” sequence, for a framerate upsampling factor of 4. (a) shows the two input
frames, as well as the average of the two input frames, which gives some idea of the motion.
(b) shows the three interpolated frames produced by the proposed BAM method, and (c)
shows comparative results obtained using BOA-TFI.
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7.1.5 Qualitative Evaluation of Temporal Consistency

As mentioned earlier, interpolating temporally consistent frames becomes
more important for higher framerate upsampling factors, where more frames
have to be interpolated. As we mentioned in the earlier chapters, the proposed
methods allow for (arbitrary) upsampling factors. However, so far, we have
only evaluated the methods in the common TFI evaluation scenario of dou-
bling the framerate, since most existing state-of-the-art TFI methods cannot
easily allow for higher upsampling factors.

Assessing the temporal consistency in an objective way is an interesting
research problem that is out of the scope of this thesis. In the future, we plan
to develop a temporal consistency measure, which employs a lot of the rea-
soning we present in this thesis to provide an objective measure of temporal
consistency. In order to give some insight into how well the BAM framework
performs, we therefore show visual results obtained on sequences from the
Sintel dataset (see Sect. A.2); Figs. 7.7 – 7.9 show crops of three sequences,
for a frame upsampling factor of 4. The development of the BAM scheme was
mainly motivated by the observation that in a coding environment, hierar-
chically anchored motion as employed by BIHA and FOHA, leads to coding
inefficiencies. In a TFI scenario, this is not an issue; in fact, the interpolation
quality of the BAM and the FOA-TFI scheme is quite similar. We therefore
show comparative results for the BOA-TFI scheme. It is worth noting that
the BOA-TFI scheme is already tailored to create consistent results, and its
performance is probably above average around moving objects. Nonetheless,
the BAM framework we propose in this chapter creates more consistent results
around moving objects, especially around thin objects; this is evidenced in the
examples of the figures, where the yellow rectangles highlight regions where
significant improvements can be observed.

7.2 Triangular Mesh Sparsification

In the earlier chapters, we employed a triangular mesh with a fixed triangle
size of 1 × 1 in the CAW procedure to map motion fields from one frame to
another. In regions of smooth motion, one can expect that the triangle size
can be increased without significantly degrading the quality of the motion
field. We employ an indexed mesh structure, which enables an efficient GPU
implementation in the future. Besides its positive impact on computational
complexity, sparsifying the motion field has other interesting benefits when it
comes to compression, where it translates to compressibility. We note, how-
ever, that the mesh sparsification algorithm we propose here is not designed
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(a) Triangular Basemesh (b) Crop of (a)

Figure 7.10: Example base mesh created by the proposed mesh sparsification algorithm,
superimposed on the (colour-coded) dense motion field. Around motion discontinuities,
triangles are split up to 1×1, whereas they are larger in regions of smooth (affine) motion.

with R-D optimality as the objective.

Algorithm 1 shows the pseudo-code of the proposed triangular mesh spar-
sification algorithm. We start by partitioning M0→1 into cells of size L, where
L is the largest allowed cell size. Then, each cell is split up into two triangles
Ti,j,p,L, where (j, i) denote the upper left coordinates of the cell, and p = 0
or p = 1 are used to distinguish between the upper left and the lower right
triangle of the cell. More precisely, the coordinates of the three vertices of a
triangle Ti,j,p,L are:

V
0,Ti,j,p,L

0 (x, y) = (j + L, i)

V
1,Ti,j,p,L

0 (x, y) = (j, i+ L)

V
2,Ti,j,p,L

0 (x, y) =

(j, i) if p = 0

(j + L, i+ L) if p = 1

(7.6)

The proposed mesh sparsification algorithm starts with a largest cell size
of L = 2N , and splits the triangles of each cell up until they are smooth. We
consider a triangle Ti,j,p,L as smooth if for all (integer) locations m covered by
the triangle, the interpolated motion uaff [m], obtained by affine interpolation
of the motion of the three vertices of the considered triangle, predicts the orig-
inal motion u[m] with a prediction error lower than ε; for all the experimental
results produced in this chapter, we set ε = 1

2 . Every triangle gets assigned a
unique TID, which, as we have seen in Sect. 7.1.3, is used for creating visibility
masks.
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Algorithm 1 Mesh Sparsification Algorithm
1: procedure CreateSparseTriangularMesh
2: L← 2N . Start with largest cell length
3: for i = 0 to height step L do
4: for j = 0 to width step L do
5: CreateSmoothTriangle(Ti,j,0,L)
6: CreateSmoothTriangle(Ti,j,1,L)
7: end for
8: end for
9: end procedure

10: function CreateSmoothTriangle(Ti,j,p,L)
11: if ‖u[m]− uaff [m]‖2 < ε ∀m ∈ Ti,j,0,L then
12: Create triangle Ti,j,p,L, assign unique TID
13: else
14: L← L/2 . Assign new cell length
15: if p == 0 then . Split upper left triangle
16: CreateSmoothTriangle(Ti,j,0,L)
17: CreateSmoothTriangle(Ti,j,1,L)
18: CreateSmoothTriangle(Ti,j+L,0,L)
19: CreateSmoothTriangle(Ti+L,j,0,L)
20: else . Split lower right triangle
21: CreateSmoothTriangle(Ti+L,j,1,L)
22: CreateSmoothTriangle(Ti,j+L,1,L)
23: CreateSmoothTriangle(Ti+L,j+L,1,L)
24: CreateSmoothTriangle(Ti+L,j+L,0,L)
25: end if
26: end if
27: end function

7.2.1 Impact of Maximum Triangle Size

The proposed mesh sparsification allows us to trade-off computational com-
plexity and memory requirements with image reconstruction quality. For eval-
uation, we use the natural sequences data set used in earlier experiments (see
Sect. A.3 for more details), which contains 12 sets of 21 frames each; as in
the TFI experiments presented earlier in this thesis, we dropped all the odd
indexed frames, which results in a total of 120 frames where a ground truth
frame exists. For each even frame pair, we estimate motion using MDP-flow
[85]. We choose a frame upsampling factor of 8, which interpolates 7 frames
in between the two reference frames. For each frame pair, we compute the
PSNR of the center frame (t = 0.5), where a ground truth frame exists. We
note that this center frame is the hardest to predict, being equally far away
from both reference frames. The closer the interpolated frame is to a reference
frame, the easier the prediction gets from the respective side, and the more
importance is put onto the prediction from that side, which generally results
in better frame interpolation quality.
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Figure 7.11: Average per-frame processing time (solid orange line, in secs) and recon-
structed PSNR (dashed blue line) as a function of maximum allowed cell size L.

Fig. 7.11 shows the impact of maximum cell size L (between 1 and 64)
on processing time (solid orange line) and reconstruction quality (dashed blue
line). One can observe that the maximum allowed cell size L has very little
impact on the reconstruction quality; this is due to the fact that around moving
objects, where the motion is expected to be less smooth, the triangles are small
irrespective of the maximum allowed cell size L. In terms of processing times,
one can see a significant drop in average processing time from 2.2s for L = 1
(i.e., a fixed cell size of 1 × 1) to around 0.45s for L = 8. On the tested
sequences with a resolution of 832×480, increasing the maximum allowed cell
size had almost no impact on processing times, indicating that the average cell
size on the tested sequences was about 8. On sequences with higher resolutions,
however, one can expect the knee point in the processing time plot to shift
further to the right.

7.3 BAM with Higher-Order Motion

We now describe how higher order motion models can be incorporated into
the BAM scheme, which, as we shall see, is particularly useful if BAM is used
in a video compression framework. We remind the reader that we use BAM(n)

to refer to the BAM scheme employing an nth-order motion model. Input
to the motion modelling stage are reference frames f0 and f1, plus additional
intermediate frames ftj ; the output is an nth-order motion field, denoted as
M

(n)
0→t, which describes the motion between f0 and any ft, t ∈ [0, 1]. As shown

in Fig. 7.12, M (n)
0→t and the two reference frames f0 and f1 are then input to

the TFI scheme.
The general form of the horizontal and vertical motion vectors following
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Figure 7.12: Extension of BAM to add a second-order motion model that is able to
account for accelerating motion (modifications in orange). In addition to the two reference
frames, we estimate the motion between f0 and at least one frame in between f0 and f1.
These motion fields are then projected onto the subspaces t and 0.5t2, which subsequently
allow us to compute M̂0→t under a constant acceleration assumption.

an nth-order motion model can be written as:

u
(n)
0→t(m) =

n∑
k=1

wkp
(u)
k tk

v
(n)
0→t(m) =

n∑
k=1

wkp
(v)
k tk

, (7.7)

where the p
(u)
k and p

(v)
k denote the motion basis vectors for the horizontal

and the vertical components, respectively, and the wk’s are weights to scale
the different basis vectors; for example, in the case of a second-order motion
model, w1 = 1, w2 = 0.5, and the two unknowns p(·)

1 and p
(·)
2 are generally

identified as velocity and acceleration.
We focus on the horizontal component u of u(n)

0→t(m), noting that the
vertical component is handled in the same way. In its general form, there are
n unknowns pk, and hence we need at least n motion vectors u0→tj (m); this
means that we require at least n+ 1 frames as input. In matrix form, we can
write the system of equations Ap = b, where

A =


w1t1 w2t

2
1 . . . wnt

n
1

w1t2 w2t
2
2 . . . wnt

n
2

...
... . . . ...

w1tq w2t
2
q . . . wnt

n
q

 , b =


u0→t1(m)
u0→t2(m)

...
u0→tq(m)

 , (7.8)

with q ≥ n. From linear algebra, we know that this system of equations has a
unique least-squares solution p+ of smallest norm. One way of finding p+ is
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in terms of the pseudo-inverse of A, denoted as A+. That is,

p+ = A+b, (7.9)

which is obtained from the singular value decomposition (SVD) of A.
The motion parameters p+ can be used to create motion that follows an

nth-order motion model for any frame ft in between the two reference frames.
For example, in the case of a second-order motion model, motion following a
constant acceleration assumption can be obtained as follows:

u
(2)
0→t(m) = p1t+ 0.5p2t

2. (7.10)

As mentioned earlier, the vertical component v0→t(m) is obtained following
the same development. Combining the horizontal and vertical components
yields u(n)

0→t(m), which is then used as input to the affine mesh mapping pro-
cedure presented in Sect. 7.1.1. Apart from the changes mentioned above, all
other aspects were left “as-is” in our exploration. In the next section, we ex-
perimentally show how the prediction performance of BAM(2) improves over
BAM(1).

7.3.1 Prediction Performance of Second-Order Motion Model

In this section, we employ a second motion field between each even frame and
succeeding odd frame, and evaluate the improved prediction performance of
BAM(2) compared to BAM(1).4

The last column of Table 7.1 shows quantitative results of the BAM(2)

scheme, where in addition to the motion between any two even reference
frames, we estimated motion between each even frame and the succeeding
odd frame. One can see that in 8 out of the 10 tested sequences, BAM(2)

performs better than BAM(1) by varying amounts. Notable improvements are
achieved on sequences that contain fairly large regions that are accelerated,
such as the “Kimono1” and “Kimono2” sequences, as well as “Rush Hour” and
“Shields1”. Clearly, the second-order model should be at least as good as the
first-order one. However, the motion fields have to be temporally consistent
in order for a higher order motion model to be meaningful, which cannot be
guaranteed if the two fields are independently estimated.

As in earlier chapters, in order to mitigate the impact of suboptimal motion
estimation, we further conduct a comprehensive experiment on challenging
sequences from the Sintel dataset, where forward motion between adjacent

4Note that while the odd frame is not available in a traditional TFI framework, it is
available in a coding framework, which this work builds towards.
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Figure 7.13: Prediction performance of the first and second order motion model on three
sequences from the Sintel dataset. Each row shows the ground truth frame, followed by the
predicted frame using the first-order motion and the second-order motion model, denoted
as BAM(1) and BAM(2), respectively. The upper right part of the crops shows the
predicted frame, and the lower left part the (absolute) difference between the prediction
and the ground truth frame.
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Chapter 7. Base-Anchored Motion (BAM)

Table 7.1: Average Y-PSNR for BAM(1)

and BAM(2) on natural sequences (10 in-
terpolated frames per sequence).

Sequence BAM(1) BAM(2)

Cactus 34.22 (-0.09) 34.31
Kimono1 33.53 (-0.54) 34.07
Kimono2 41.39 (-0.56) 41.94
Rushhour 34.77 (-0.73) 35.50
Shields1 36.20 (-0.50) 36.70
Shields2 37.75 (-0.13) 37.88
Park 39.94 (+0.19) 39.75
Parkrun 32.04 (-0.16) 32.20
Station2 43.16 (-0.10) 43.26
Mobcal 38.51 (+0.13) 38.38

Average 37.15 (-0.25) 37.40

Table 7.2: Average Y-PSNR for BAM(1)

and BAM(2) on full Sintel sequences (24
interpolated frames per sequence).

Sequence BAM(1) BAM(2)

Alley 1 31.64 (-1.62) 33.26
Alley 2 32.86 (-2.02) 34.88
Ambush 7 30.58 (-5.07) 35.66
Bandage 1 31.97 (-1.26) 33.22
Bandage 2 33.82 (-2.07) 35.89
Bamboo 1 29.23 (-0.06) 29.29
Bamboo 2 28.54 (-0.81) 29.35
Market 2 28.62 (-0.96) 29.58
Shaman 2 37.58 (-1.04) 38.62
Shaman 3 37.05 (-0.01) 37.06

Average 32.19 (-1.49) 33.68

frames (i.e., 1-hop motion) is available as ground truth. We construct a 2-
hop motion field by concatenating two 1-hop flows; for locations that move
out of the frame in the first motion field, we assume constant velocity to
create the 2-hop motion vector. We drop every odd frame and use the BAM
scheme to predict the odd frames. Table 7.2 shows the average Y-PSNR on a
number of sequences. In this experiment, the BAM(2) consistently outperforms
BAM(1). Significant improvements are observed on sequences that contain
large acceleration, such as the “Ambush 7” sequence, as well as “Bandage 1”
and “Alley 2”.

Fig. 7.13 shows crops of frames from three different sequences: in “Alley
1” a hand holding an apple is moving down and slightly rotating; “Ambush 7”
contains a sceptre that is heavily accelerated as it moves North-East; lastly,
in “Shaman 2”, the motion of the beard of the shaman is highly complex, as
can be seen in Fig. A.6f. In all sequences, BAM(1) is able to create highly
credible results (see upper right parts of the crops in the middle column of
the Fig. 7.13); however, BAM(2) predicts the actual location of objects much
better than BAM(1), as evidenced by the smaller prediction errors.

7.4 Video Compression using BAM

The experiments in the previous section have shown that BAM(2) is able to bet-
ter predict the “true” position of moving objects that are under non-constant
motion. In this section, we show how the BAM scheme can be employed in
a video compression system. Before we delve into the description of how this
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7.4 Video Compression using BAM

is achieved, we find it useful to compare the three motion anchoring schemes
proposed in this thesis in some more details.

In Fig. 7.1, one can see how the motion anchoring progressively simplifies,
leading to BAM, where all coded motion information is anchored at one frame.
Note that in Fig. 7.1c, only three motion fields are coded; one full (solid
black arrow), as well as two scaled motion fields (dotted blue arrows), which
would enable the estimation of a 3rd-order motion model. Higher-order motion
could be estimated by including additional motion fields (dotted grey arrows
in Sect. 7.3c). The choice of coding motion fields M0→1, M0→4, and M0→8,
is not arbitrary. As mentioned in Sect. 7.3, the scheme always requires the
motion linking the two reference frames (M0→8). For fast moving objects,
there might be no correspondence between f0 and f8, since the object could
have left the frame. For this reason, it is helpful to have motion information
between shorter baselines. For slow-moving objects, on the other hand, longer
baselines are required to even observe the motion.

As mentioned earlier, BAM departs from the two other hierarchical motion
anchoring schemes. Because of the central organization of motion information,
no inferred motion information (dashed orange arrows in Fig. 7.1) is coded.
As discussed earlier, inferred motion field residuals are expected to be nonzero
only in regions of disocclusion, and only if the proposed background motion
extrapolation “fails”; this is expected to be the case whenever there are new
objects appearing in the disoccluded region. In the present scheme, we ignore
this case, and code potential errors in the texture residual. An interesting
extension to the BAM scheme would be to assess if more optimal decisions
could be made by adding “accommodation” motion fields to the base mesh,
which augment the motion description to describe the trajectory of such “in-
termediate” motion layers.

7.4.1 Integrating BAM into a Video Coder

In this section, we integrate the BAM scheme into HEVC, and provide prelim-
inary coding results on three sequences. We estimate motion between the first
frame (i.e., the base frame) and eight successive frames of the GOP. From these
eight motion fields, a second-order motion model is estimated as described in
Sect. 7.3. We then predict the seven target frames of the GOP, and code the
texture residuals using HEVC; the two reference frames are coded in Intra-
mode. The motion fields are coded using a modified JPEG2000 codec, which
uses a breakpoint-adaptive wavelet transform to conserve motion boundaries,
as used in Sect. 5.5.1. Currently, all motion fields are separately coded; further
improvements can be expected from a joint motion field coding.
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Figure 7.14: R-D comparison of BAM with HEVC. We show R-D plots for three test
sequences; the x-axis shows the average number of kbits per frame, and the y-axis the
Y-PSNR.
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7.4 Video Compression using BAM

(a) HEVC QP33 (32.62dB) (b) f̂
(1)
276 QP33 no residual (26.13dB)

(c) Absolute difference HEVC (d) Absolute difference BAM(1)

(e) HEVC crop 1 (f) HEVC crop 2 (g) BAM(1) crop 1 (h) BAM(1) crop 2

Figure 7.15: Visual comparison of decoded frames. (a) shows the middle frame f276
(GOP is f272 − f280) from the “Shields” sequence, decoded using HEVC at QP value
of 33; (b) shows the same frame produced by BAM(1) without residual coding. (c)
and (d) show the absolute differences of both methods compared to the original frame;
(e-h) show crops, highlighting that there is hardly any visible difference, despite the large
difference in terms of PSNR.

Fig. 7.14 shows the average per-frame rate-distortion performance for three
sequences, with QP-values of {28, 33, 38, 42}; the QP-offset for the target frame
residuals is set to 4. We show results obtained for BAM(1) (blue) and BAM(2)

(red), as well as for HEVC (yellow). We further show the performance of a
modified version of HEVC (purple), where only the two reference frames are
used as prediction references, as is the case in our framework.

On the “Station 2” sequence, which is dominated by zoom-out motion,
BAM(2) performs on par with HEVC. The “Shields” sequence contains an
inconsistent zoom, for which the (credible) constant-velocity prediction of
BAM(1) creates large residuals, which are highly expensive to code. This
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Chapter 7. Base-Anchored Motion (BAM)

(a) HEVC QP33 (35.35dB) (b) f̂
(1)
84 QP33 no residual (33.98dB)

(c) Absolute difference HEVC (d) Absolute difference BAM(1)

(e) HEVC crop 1 (f) HEVC crop 2 (g) BAM(1) crop 1 (h) BAM(1) crop 2

Figure 7.16: Visual comparison of decoded frames. (a) shows the middle frame f84
(GOP is f80 − f88) from the “Surfer Jump” sequence, decoded using HEVC at QP value
of 33; (b) shows the same frame produced by BAM(1) without residual coding. (c)
and (d) show the absolute differences of both methods compared to the original frame;
(e-h) show crops of the decoded frames; while there are differences in the splashes, the
difference between (e) and (g) is hardly visible.

is evidenced in Fig. 7.15, where we focus on one frame of the GOP. While
there are hardly any visible differences between the decoded frame obtained
from HEVC and the prediction (without residual added) of BAM(1), the latter
results in a large prediction residual; in terms of Y-PSNR, there is a difference
of more than 6dB. As can be seen in the R-D plot of Fig. 7.14b, BAM(2) is
able to much better predict the intermediate frames, which is evidenced by
the large gap between the blue and the red curve in the figure.

Finally, we tested the performance on the “Surfer Jump” sequence, which
contains complex motion such as splashing waves that is not captured in the
estimated motion fields. The reason that BAM(2) performs slightly worse that
BAM(1) is that the additional motion field that has to be coded for the second-
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7.5 Chapter Summary

order motion model does not improve the prediction of the target frame. While
HEVC outperforms the proposed scheme on this sequence, it is worth noting
that the interpolated frames produced by our scheme are highly credible, as
can be seen in Fig. 7.16. Videos of both the “Shields” and the “Surfer Jump”
sequence without residual coding are available on our website.5

We end the discussion by highlighting that with the proposed framework,
the framerate can easily be increased at the decoder without having to re-
estimate motion, which is not possible in current video codecs. Furthermore,
the centralized organization of motion should greatly facilitate ROI coding.
This is because for location in the left base frame f0, the trajectory through
the spatio-temporal volume is completely described. Therefore, for any ROI,
the information that has to be decoded is very well defined. In a traditional
anchoring scheme, accessibility is much harder to achieve, since motion is
organized at several frames. Additionally, the target-anchoring requires the
decoding of large amounts of “unnecessary” data to discover which regions
belong to the ROI.

7.5 Chapter Summary

In this chapter, we presented a third reference-based motion field anchor-
ing strategy for video compression. In this scheme, all motion information
is anchored at the first frame of the GOP. This central motion organization
addresses the largest shortcoming of the two hierarchical anchoring strate-
gies presented in earlier chapters, which is the efficient composition of motion
fields. We proposed a mesh sparsification algorithm that enables an adaptive
cell size of the triangular motion mesh; experimental results showed that the
computational complexity can be reduced by 75%, with a trivial drop in PSNR
of the interpolated frames.

In regions of non-constant motion, the constant velocity assumption that
is very common in TFI schemes can lead to large prediction residuals, even
if the interpolated frame looks highly credible. In a compression scenario,
where target frames are to be predicted, these prediction residuals can be
expensive to code. With the aim of improving the prediction performance of
the BAM framework, we incorporated higher-order motion fields, which are
able to better predict the actual trajectory of moving objects through the
spatio-temporal volume. Subsequently, we integrated the BAM scheme into
HEVC, where initial experiments showed very promising results compared to
HEVC.

5http://ivmp.unsw.edu.au/˜dominicr/pcs_2016.html
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8 Conclusions and
Future Directions

This thesis investigates novel motion anchoring schemes for highly scalable
video compression schemes, with the aim of improving the temporal scala-
bility and accessibility features. Existing video compression schemes employ
block-based motion, which are unable to accurately represent motion infor-
mation in the vicinity of moving object boundaries. Instead, in this thesis,
we focus on “physical” motion, which accurately describes the trajectory of
each pixel location. In a compression scenario, such dense motion fields are
generally discarded because of their high coding cost. We employ a recently
proposed highly scalable representation of motion discontinuities using break-
points. Breaks can be used to adapt the wavelet bases in the vicinity of (mo-
tion) discontinuities; this significantly reduces the coding cost of motion fields
while retaining sharp moving object boundaries in quantized motion fields.

Existing video compression systems describe motion at the target frames
that are to be predicted. This target-based anchoring of motion implies that
motion is only involved in the prediction of one frame. We show how the
combination of physical motion with an explicit description of motion bound-
aries enables to flip the anchoring of motion from target to reference frames,
which enables the re-use of motion information from coarser temporal levels
at finer temporal levels, which further reduces the motion coding cost. In
such a reference-based anchoring, motion fields have to be inverted in order to
serve as a prediction references; the involved motion mapping process is one
of the key steps in TFI. Observing that motion discontinuities displace with
the foreground object, we propose a motion-discontinuity guided motion field
inversion procedure in which double mappings are resolved in a disciplined
way; furthermore, we show how motion discontinuity information can be used
to identify background motion in disoccluded regions, which subsequently can
be extrapolated in order to assign “physical” motion in regions of disocclusion.

In order to enable bidirectional prediction of the target frame, existing TFI
schemes estimate motion information both in forward and reverse direction of
the two reference frames. This doubles the amount of motion information
that has to be estimated, and – in a compression scenario – ultimately has to
be coded. Instead, in this thesis we propose a powerful operation on motion

171



Chapter 8. Conclusions and Future Directions

fields we call motion inference, which can be used to obtain a geometrically
consistent bidirectional prediction of a target frame from just one motion field
linking two reference frames. Throughout the thesis, we successively refine
the TFI performance; extensive evaluations and comparisons with state-of-
the-art TFI methods highlight the high performance of the proposed frame
interpolation scheme.

In a compression scenario, inferred motion fields are particularly appeal-
ing since they are expected to be nonzero only in regions that get disoccluded
between the two reference frames, and hence are inexpensive to code. We in-
vestigate three different reference-based motion anchoring schemes in the con-
text of (highly scalable) video compression. In the BIHA scheme, the motion
anchoring of all coded motion fields is “flipped” with respect to the traditional
anchoring of motion fields at target frames. Through careful analysis of how
the spatio-temporal texture and motion subbands interact, we determine the
importance of the different components, which can be used to weight the dif-
ferent spatio-temporal subbands. Experimental results show that the BIHA
scheme outperforms the traditional anchoring of motion at target frames. The
improvements are both due to cheaper motion field coding, as well as better
occlusion handling and geometrical consistency, which cannot be guaranteed
in a target-based anchoring if motion information is quantized.

The experimental results of the BIHA scheme are both promising and in-
structive; while they show some major advantages over the traditional target-
based anchoring, they also allowed us to identify a number of suboptimalities.
In Chapter 6, we further improve the TFI performance by addressing three
key issues of the BOA-TFI scheme. First, we propose a divergence-based mea-
sure of motion discontinuity we call DFLM, which conveys a much “richer”
description of motion discontinuity information than the (binary) discontinu-
ity description induced from breakpoints that we used in the BIHA scheme.
The second improvement consists of flipping the direction of the motion infer-
ence procedure, which results in a reduction of the computational complexity
by roughly a factor of 3, while improving the geometrical consistency of the
prediction motion fields. Finally, we propose two texture optimizations: the
SWCA creates a smoother transition in regions where we change from bidi-
rectional to unidirectional prediction, which is particularly useful in regions
of illumination change. We further propose an optical blur synthesis, which
creates a much smoother transition around moving objects. While both tex-
ture optimizations are targeted at improving the visual quality, they also have
a positive impact on prediction performance; averaged over 120 interpolated
frames, we observe an improvement of 0.18dB.
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In the third motion anchoring scheme proposed in this thesis, we further
simplify the motion anchoring structure and anchor all motion information at
the first frame (e.g., base frame) of the GOP; we call this anchoring BAM.
In contrast to BIHA and FOHA, the motion anchoring of the BAM scheme
is no longer hierarchical; as mentioned before, this does not mean that the
temporal transform cannot be hierarchical. However, in this thesis, we only
considered a non-hierarchical temporal transform, which allowed us to easily
integrate the framework into HEVC. We believe that this motion anchoring
is the most promising one. The fact that all motion information is centrally
organized has a number of advantages, including:

• Very compact motion representation. Furthermore, the fact that all
motion information is coded in the same grid removes rounding errors
that are inevitable in the two other, hierarchical anchoring strategies we
proposed;

• Higher order motion models can be elegantly integrated, which improve
the prediction performance of the TFI scheme, which is highly relevant
in a compression scenario;

• ROI coding is greatly facilitated, since for any region, the trajectory
through the spatio-temporal volume is known, which means that we
know exactly which parts have to be decoded.

In order to improve the computational complexity of the BAM scheme, we
propose a mesh sparsification algorithm, which uses larger triangles in regions
of smooth motion. Experimental results on a large dataset show that the com-
putational complexity can be reduced by 75%, while having a trivial impact
on the PSNR.

To conclude, Fig. 8.1 shows the TFI performance (in terms of Y-PSNR) as
well as processing times of the three anchoring schemes proposed in this the-
sis. One can see that the change from the bidirectional hierarchical anchoring
(BOA-TFI) to the forward-only anchoring (FOA) leads to a significant in-
crease in quality, while reducing the computational complexity by roughly
75%. From a TFI perspective, the FOA and BAM schemes are quite similar,
with the main difference being that the BAM scheme incorporates the mesh
sparsification, which reduces the computational complexity. As can be seen,
there is a small drop in quality between BAM(1) and FOA. When incorpo-
rating a second-order motion model (BAM(2)), however, the performance can
even be slightly increased, without impacting the processing time (ignoring the
motion estimation time). In addition, we expect one of the main advantages
of BAM over FOHA in a compression scenario.
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Figure 8.1: TFI performance comparison of the three anchoring schemes proposed in this
thesis. There is a clear performance increase from BOA-TFI to FOA-TFI, both in terms of
quality as well as computational complexity. The mesh sparsification as employed in BAM
leads to another decrease in computational complexity, with a slight negative impact on
quality (BAM(1)), which can be made up by incorporating a second-order motion model
(BAM(2)).

The ideas presented in this thesis are fundamentally different from the way
video compression systems have been developed in the last three decades. The
seamless integration of TFI with video compression systems makes it possi-
ble to obtain high-quality TFI without having to re-estimate motion at the
decoder, which greatly reduces the computational complexity. The proposed
changes to the way motion is anchored and employed in video compression
schemes should be able to greatly increase the interactive browsing capabili-
ties of future video compression systems. The explorations in this thesis give
rise to a number of interesting and challenging research directions, which we
present in the next section.

8.1 Future Research Directions

We conclude this thesis with an outline of a number of interesting research
questions.

Tailored Motion Estimation Schemes The quality of the TFI schemes pro-
posed in this thesis depends on the quality of the motion fields that are em-
ployed. Ideally, motion fields should exhibit the following characteristics:

1. Piecewise-smoothness with discontinuous jumps at moving object
boundaries;

2. Temporal consistency across frames; that is, the motion discontinuities
of a motion field Mi→j should map to corresponding motion boundary
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information at frame fj ;

3. Multiple motion fields anchored at the same frame should share one set
of motion discontinuity information;

State-of-the-art optical flow estimators are able to produce suitable results in
terms of the first characteristic. The other two points, however, are specific
requirements that emerge from the proposed motion inference schemes, and
are therefore not considered in existing optical flow estimators. Especially the
last point is hard to be satisfied if motion fields are independently estimated.
For this reason, the coding results on natural sequences in Sect. 5.5.4 and
Sect. 7.4.1 are limited to sequences that contain relatively few discontinuities.
In order to be able to perform more comprehensive evaluations on natural test
sequences, a joint motion estimation scheme with a discontinuity alignment
constraint needs to be developed.

Integration of FOA-TFI and BAM-TFI into Scalable Compression Systems
In Chapter 5, we presented a detailed integration of the BOA-TFI scheme into
a highly scalable video compression system. For FOA-TFI, we focused on the
TFI performance of a simplified motion anchoring scheme, which significantly
improved over the interpolation performance of the BOA-TFI scheme. We
have outlined how FOA-TFI could be integrated into a highly scalable video
compression system, which we refer to as FOHA, but left the the actual in-
tegration and experimental validation for future work. While there is little
doubt that the R-D performance of the FOHA scheme would improve over the
one of the BIHA framework, it is unclear by how much.

In Sect. 7.4.1, we integrated the BAM scheme into HEVC, and tested its
performance in a single-layer compression scenario. The prime reason for this
was that it allowed us to focus on the frame interpolation quality, while at the
same time benefiting from the highly optimized compression pipeline provided
by HEVC. The next logical step is to implement BAM in a highly scalable video
compression system. This implementation should be quite straight-forward;
however, in order to be able to perform a meaningful comparison, the motion
estimation scheme first has to be improved, as detailed above.

Improving the Motion Extrapolation Procedure in Disoccluded Regions
The proposed motion extrapolation techniques are applied on a per-triangle
basis. As mentioned in Sect. 5.5.1, this can lead to artificial high-frequency
content in the mapped motion fields at triangle boundaries, which are expen-
sive to code; this is evidenced in the “Flower” sequence (see Table 5.2), where
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the inferred motion fields become very expensive to code. In the BAM scheme,
this is not an issue since no mapped motion information serves as prediction
reference. However, the artificial discontinuities in the mapped motion fields
can lead to high-frequency content in the motion-compensated prediction of
the texture information. Therefore, it would be beneficial to have a more
global approach at interpolating motion in disoccluded regions.

In the BAM scheme, this could be achieved by adjusting the motion of
V SPLIT BG vertices (see Sect. 7.1.2 and Fig. 7.5) so as to minimize the overall
folding energy across triangle edges, before they are mapped back to the base
frame to form local background motion layers.

Temporal Consistency Measure The central organization of the BAM
scheme facilitates the enforcement of the temporal consistency of the inter-
polated frames. In particular, regions that get disoccluded between the two
reference frames get assigned temporally consistent motion. However, there
exists no quantitative measure for assessing temporal consistency, which is why
we had to resort to qualitative comparisons for the evaluation of the temporal
consistency in Sect. 7.1.5. The development of such a temporal consistency
measure would be particularly useful for high framerate-upsampling-factors,
as it would be more informative than (individually computed) PSNR values
for the upsampled frames. Besides of being useful for comparing the temporal
consistency of different TFI schemes, this measure could be directly integrated
into the BAM scheme to further improve the overall consistency of the inter-
polated frames.
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8.2 Final Remarks

The motion anchoring strategies explored in this thesis represent a fundamen-
tal change to the way motion is employed in a video compression system –
from a “prediction-centric” point of view to a “physical” representation of the
underlying motion of the scene. The proposed “reference-based” motion an-
chorings can support computationally efficient, high quality temporal motion
inference, which requires as few as half of the coded motion fields compared to
conventional codecs. This raises the prospect of achieving lower motion bit-
rates than the most advanced conventional techniques, while providing more
temporally consistent and meaningful motion. The availability of temporally
consistent motion can facilitate the efficient deployment of highly scalable
video compression systems based on temporal lifting, where the feedback loop
used in traditional codecs is replaced by a feedforward transform.

The novel motion anchoring paradigm proposed in this thesis is well-
adapted to seamlessly supporting “features” beyond compressibility, including
high scalability, accessibility, and “intrinsic” frame upsampling. These fea-
tures are becoming ever more relevant as the way video is consumed continues
shifting from the traditional broadcast scenario with predefined network and
decoder constraints to interactive browsing of video content over heterogeneous
networks.
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A Video Test Sets

In the following, we present the different video test sets that we use throughout
the thesis for evaluation purposes. The three test sets are:

1. Own synthetic sequences, where ground truth motion between any pair
of frames in a GOP is known;

2. The Sintel dataset is a synthetic dataset that contains a large variety
of highly challenging sequences with complex motion. For this dataset,
1-hop forward motion is known;

3. Common natural test sequences. For these sequences, motion fields have
to be estimated.

Before we show sample frames and motion fields, we give an example of the
motion field visualization we use throughout the thesis in Fig. A.1.

Figure A.1: Visualization of motion fields using a colour-code. The direction and (nor-
malized) magnitude of the motion vector at each location can be read from the colour in
the colour-wheel; the more saturated, the larger the magnitude of the motion.
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Chapter A. Video Test Sets

A.1 Synthetic Sequences

(a) Baseball f0 (b) Baseball motion M0→1

(c) Beach f0 (d) Beach motion M0→1

(e) Space f0 (f) Space motion M0→1

(g) Winter f0 (h) Winter motion M0→1

Figure A.2: Own synthetic sequences part 1/2. Full sequences and motion fields are
available on http://ivmp.unsw.edu.au/˜dominicr/biha_scheme.html.
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A.1 Synthetic Sequences

(a) Autumn f0 (b) Autumn motion M0→1

(c) Balls f0 (d) Balls motion M0→1

(e) Butterfly f0 (f) Butterfly motion M0→1

(g) Flowers f0 (h) Flowers motion M0→1

(i) Robots f0 (j) Robots motion M0→1

Figure A.3: Own synthetic sequences part 2/2. Full sequences and motion fields are
available on http://ivmp.unsw.edu.au/˜dominicr/biha_scheme.html.
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Chapter A. Video Test Sets

A.2 Sintel

(a) Alley 1 f14 (b) Alley 1 motion M14→15

(c) Alley 2 f14 (d) Alley 2 motion M14→15

(e) Ambush 7 f14 (f) Ambush 7 motion M14→15

(g) Bamboo 1 f14 (h) Bamboo 1 motion M14→15

(i) Bamboo 2 f14 (j) Bamboo 2 motion M14→15

Figure A.4: Sintel Sequences part 1/3. Full sequences are available on http://sintel.
is.tue.mpg.de/downloads.
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A.2 Sintel

(a) Bandage 1 f14 (b) Bandage 1 motion M14→15

(c) Bandage 2 f14 (d) Bandage 2 motion M14→15

(e) Market 2 f14 (f) Market 2 motion M14→15

(g) Market 5 f14 (h) Market 5 motion M14→15

(i) Market 6 f14 (j) Market 6 motion M14→15

Figure A.5: Sintel Sequences part 2/3. Full sequences are available on http://sintel.
is.tue.mpg.de/downloads.
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Chapter A. Video Test Sets

(a) Cave 2 f14 (b) Cave 2 motion M14→15

(c) Cave 4 f14 (d) Cave 4 motion M14→15

(e) Shaman 2 f14 (f) Shaman 2 motion M14→15

(g) Shaman 3 f14 (h) Shaman 3 motion M14→15

(i) Sleeping 1 f14 (j) Sleeping 1 motion M14→15

Figure A.6: Sintel Sequences part 3/3. Full sequences are available on http://sintel.
is.tue.mpg.de/downloads.
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A.3 Natural Sequences

A.3 Natural Sequences

(a) Cactus f6 (b) Cactus motion M̂6→8
†

(c) Kimono1 f0 (d) Kimono1 motion M̂0→2
†

(e) Kimono2 f174 (f) Kimono2 M̂174→176
†

(g) Mobcal f392 (h) Mobcal M̂392→394
†

Figure A.7: Common natural sequences part 1/3. Full sequences are available on https:
//media.xiph.org/video/derf. †Motion estimated using MDP-Flow [85].
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Chapter A. Video Test Sets

(a) Park f138 (b) Park motion M̂138→140
†

(c) Parkrun f146 (d) Parkrun motion M̂144→146
†

(e) Shields1 f100 (f) Shields1 M̂100→102
†

(g) Shields2 f384 (h) Sheilds2 M̂384→386
†

Figure A.8: Common natural sequences part 2/3. Full sequences are available on https:
//media.xiph.org/video/derf. †Motion estimated using MDP-Flow [85].
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A.3 Natural Sequences

(a) Station2 f20 (b) Station2 motion M̂20→22
†

(c) Terrace f138 (d) Terrace motion M̂138→140
†

(e) Rushhour f48 (f) Rushhour M̂48→50
†

(g) Stockholm f260 (h) Stockholm M̂260→262
†

Figure A.9: Common natural sequences part 3/3. Full sequences are available on https:
//media.xiph.org/video/derf. †Motion estimated using MDP-Flow [85].
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