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Abstract—We have recently proposed a motion-centric tempo-
ral frame interpolation (TFI) method, called BAM-TFI, which is
able to produce high quality interpolated frames under a constant
velocity assumption. However, for objects that do not follow
constant velocity motion, the predictions, although credible, will
differ from the “true” target frames, leading to high prediction
residuals. In this paper, we show how higher-order motion models
can be incorporated into the BAM-TFI scheme to interpolate
frames that better predict the target frames. This opens up the
door to a seamless integration of TFI with a video coding scheme.
Comparisons on a variety of both synthetic and natural video
sequences highlight the benefits of a second-order motion model.
We further integrate the proposed TFI scheme into HEVC;
preliminary comparisons with HEVC show promising results.

I. INTRODUCTION

Motion compensation lies at the heart of both temporal
frame interpolation (TFI) schemes and video compression
algorithms. In TFI, it is used to increase the frame-rate by
inserting visually pleasing intermediate frames in between
existing frames. In a video compression framework, frames are
coded in groups of pictures (GOP), and motion-compensated
temporal prediction is used to reduce the prediction residual
of frames within the GOP; as such, the aim of a video coder
is to find the optimal trade-off between spending bits on
texture residual, and the cost of coding motion and other side-
information. The quality (and complexity) of motion vector es-
timation has steadily increased from one video coding standard
to the next. However, even the highly sophisticated motion
estimation employed in HEVC [1], the latest standardized
codec, is still “opportunistic” in its nature, which means that
it does not produce motion that can be used for TFI.

For this reason, most existing TFI schemes (re-)estimate
motion at the decoder. This motion estimation process domi-
nates the computational complexity of TFI, which is the reason
most methods “resort” to hierarchical block-motion estimation
schemes with added smoothness constraints [2]. Such “block”
motion is unable to accurately describe motion around mov-
ing objects. Furthermore, visually disturbing block-artefacts
require time-consuming texture optimizations [3]. Lu et al. [4]
use four consecutive frames to detect occluded regions, and
show improved results compared to [2]. While the use of more
than two reference frames allows to observe acceleration, this
was not used in [4].

With the exception of just a few TFI methods (e.g., [5]),

existing TFI schemes interpolate frames under a constant
velocity assumption. One reason for this is that in order to
incorporate acceleration, an accurate model of the underlying
motion flow is required; such motion models are absent in
many of the prior schemes. The problem with the constant
velocity assumption is that it leads to abrupt changes in
the motion trajectory of accelerated objects at the transition
between reference frames.

In [6], we proposed a “motion-centric” TFI scheme (BAM-
TFI), which only uses high-quality motion information (and
derived motion discontinuities) in the process of mapping
the motion to the target frame we seek to interpolate. The
BAM-TFI scheme is able to create highly credible interpolated
frames under a constant velocity assumption. In this paper, we
show how by employing more than two reference frames, the
scheme can be extended to predict frames following higher-
order motion. For example, for a second-order motion model,
the scheme needs at least three reference frames to estimate
two motion fields, from which velocity and acceleration pa-
rameters can be estimated. These parameters can subsequently
be used to interpolate a frame at any position between the
given reference frames assuming constant acceleration.

In a coding framework, the interpolated frames can be used
as predictions for the intermediate input frames. By incorporat-
ing higher-order motion models into the interpolation scheme,
significantly lower prediction residuals can be achieved for
regions that undergo non-constant motion.

In order to give more insights into the benefits of the
higher-order motion model, we incorporate a second-order
motion model extension of the proposed BAM-TFI scheme
into HEVC, where preliminary experiments show promising
results. The seamless integration of TFI into a video compres-
sion system allows for the time-consuming motion estimation
to be performed at the encoder; this high-quality motion can
then be used at the decoder to perform temporal upsampling
and thereby display the video at a frame-rate higher than the
one of the input sequence available at the encoder.

II. HIGHER-ORDER MOTION MODELS

Almost all existing TFI schemes interpolate frames under a
constant velocity assumption. Unlike most of these schemes,
our recently proposed motion-centric BAM-TFI scheme [6]
employs high-quality motion fields, which makes extensions
to higher-order motion models practical. Fig. 1 shows the



Fig. 1. Extensions to the BAM-TFI framework in order to add a second order motion model that is able to account for accelerating motion (modifications
in orange). In addition to the two reference frames, we estimate the motion between f0 and at least one frame in between f0 and f1. These motion fields
are then projected onto the subspaces t and 0.5t2, which subsequently allow us to compute M̂0→t under a constant acceleration assumption.

necessary modifications for a second-order motion model. For
the purpose of discussion, we use t ∈ [0, 1] to denote the
normalized time difference between the two reference frames
f0 and f1. Let u0→t(m) denote a motion vector which links
a location m in f0 with its corresponding location in ft; here,
u = (u, v) holds information for the horizontal and vertical
component of the motion field. We further use u

(n)
0→t(m) to

denote a motion vector following an nth-order motion model.
The general form of a motion vector following an nth-order

motion model can be written as

u
(n)
0→t(m) =

n∑
k=1

wkpkt
k, (1)

where the pk’s are the motion basis vectors, and the wk’s are
weights to scale the different basis vectors. For example, in
the case of second-order motion model, w1 = 1 and w2 = 0.5,
and the two unknowns p1 and p2 are generally identified as
velocity and acceleration.

We focus on the horizontal component u of u
(n)
0→t(m),

noting that the vertical component is handled in the same way.
In its general form, there are n unknowns pk, and hence we
need at least n motion vectors u0→tj (m); this means that we
require at least n+1 frames as input. In matrix form, we can
write the system of equations Ap = u, with

A =


w1t1 w2t

2
1 . . . wnt

n
1

w1t2 w2t
2
2 . . . wnt

n
2

...
...

. . .
...

w1tq w2t
2
q . . . wnt

n
q

 , u =


u0→t1(m)
u0→t2(m)

...
u0→tq (m)

 , (2)

where q ≥ n. From linear algebra, we know that this system of
equations has a unique least-squares solution p+ of smallest
norm. One way of finding p+ is in terms of the pseudo-inverse
of A, denoted as A+ (p+ = A+u), which is obtained from
the singular value decomposition (SVD) of A.

The motion parameters p+ allow us to create motion that
follows an nth-order motion model for any frame ft in

between the two reference frames. For example, in the case
of a second order motion model, motion following a constant
acceleration assumption can be obtained as follows:

u
(2)
0→t(m) = p1t+ 0.5p2t

2. (3)

As mentioned earlier, the vertical component v
(n)
0→t(m) is

obtained following the same development. Combining the
horizontal and vertical components yields u

(n)
0→t(m).

III. BAM-TFI WITH HIGHER-ORDER MOTION

In this section, we show how the BAM-TFI framework we
presented in [6] can be extended to account for higher-order
motion; we use BAM(n) to refer to the BAM-TFI scheme
employing nth-order motion. The proposed scheme employs
piecewise-smooth motion fields, with sharp discontinuities at
moving object boundaries; suitable motion can be obtained
for example using the motion detail preserving optical flow
algorithm described in [7]. As mentioned in Sect. II, the input
to the motion modelling stage are reference frames f0 and f1,
plus additional ftj ; the output is an nth-order motion field,
denoted as M

(n)
0→t, which describes the motion between f0

and any ft, t ∈ [0, 1]. As shown in Fig. 1, M (n)
0→t and the two

reference frames f0 and f1 are then input to BAM-TFI.
In the following discussion, we describe an affine warping

procedure that is used to derive from M
(n)
0→t the motion fields

anchored at the target frame ft. During this motion mapping
procedure, we use the observation that motion discontinuities
travel with the foreground object in order to resolve double
mappings (occluded regions), and fill in sensible motion in
disoccluded regions (i.e., holes).

A. Affine Mesh Warping: Motion Inversion and Inference

We employ the triangular mesh sparsification algorithm
presented in [6] to partition the input motion field M

(n)
0→t

into a triangular mesh; the output is a set of K vertices
V k
t , k ∈ {1, ...,K}. Each vertex V k

0 records its coordinates



Fig. 2. Illustration of the key ideas used in the proposed TFI method to
assign sensible motion in regions around moving objects; see text for details.

in frame f0, and holds motion vectors relating it with the
corresponding location in the succeeding reference frame f1.
Triangles, formed by connecting vertices, are larger in regions
of smooth motion within objects, and smaller around moving
object boundaries; triangles that straddle motion discontinu-
ities are of size 1× 1.

For the description of the mapping process, we focus on
how an individual vertex V k

0 is mapped to the target frame;
the mapped vertices can then be connected together to form
triangles, which completely cover the target frame; motion
M̂

(n)
t→0 and M̂

(n)
t→1, which relates ft with its preceding and

succeeding reference frame f0 and f1, respectively, can then
be obtained through affine interpolation of the motion vectors
u
(n)
t→0(V

k
t ) and u

(n)
t→1(V

k
t ).

We use u
(n)
0→t(V

k
0 ), derived from an nth-order motion model

as described in Sect. II, to map V k
0 to the target frame; that is,

V k
t = V k

0 +u
(n)
0→t(V

k
0 ). Negating its motion yields the motion

linking the target frame with f0,

u
(n)
t→0(V

k
t ) = −u(n)

0→t(V
k
0 ). (4)

From u
(n)
0→1(V

k
0 ) and u

(n)
0→t(V

k
0 ), we infer the forward pointing

motion vector u(n)
t→1(V

k
t ):

u
(n)
t→1(V

k
t ) = u

(n)
0→1(V

k
0 )− u

(n)
0→t(V

k
0 ), (5)

which links the vertices between the target frame and the suc-
ceeding reference frame f1. Importantly, because u

(n)
t→1(V

k
t )

is composed of motion vectors u0→1(V
k
0 ) and u

(n)
t→0(V

k
t ),

u
(n)
t→0(V

k
t ) and u

(n)
t→1(V

k
t ) point to the same geometrical

location in f0 and f1.

B. Handling of Regions around Moving Objects

Using Fig. 2, where a foreground rectangle moves on top
of static1 background, we now give a high-level overview of
how problematic regions around moving objects are handled;
the approach adopted here is the same as that in [6], where it
is expounded more comprehensively.

1) Handling of Double Mappings: As we are mapping
triangles from f0 to ft, multiple triangles may overlap in the
target frame; this happens on the leading side of moving ob-
jects, where a foreground object moves on top of a background
object (see purple region in Fig. 2). This ambiguity is resolved

1The background is static for ease of explanation; the same reasoning
generalizes to scenes with moving background.

by observing that the foreground motion maps the nearby
motion discontinuity in f0 closer to a motion discontinuity
in the other reference frame f1 (cyan arrow) than the motion
belonging to the background object (orange arrow).

2) Background Motion Extrapolation in Disoccluded Re-
gions: Triangles that straddle a region of large divergence
in M

(n)
0→1 are likely disoccluding when mapped to the target

frame (see green region in Fig. 2). In such regions, the affine
interpolated motion linearly interpolates between foreground
and background motion vectors, which creates “non-physical”
motion. Again, using motion discontinuity information, we
identify which vertex/vertices of the disoccluding triangle
belong to the background; their motion is then extrapolated
to the foreground vertex/vertices of the disoccluding triangle.

C. Weighted, Occlusion-Aware Frame Interpolation

In the BAM-TFI framework, we readily observe regions that
become disoccluded between f0 and ft (e.g., forward disoc-
clusions); these are the regions where the piecewise-smooth
motion fields exhibit large local divergence, where background
motion is extrapolated as explained above. With a slightly
more involved method, we compute reverse disocclusions, i.e.
regions in ft that are not visible in f1 (see [6] for details);
these correspond to a subset of the regions in which double
mappings are observed in the second reference frame. We store
this valuable information in visibility masks

Ijt [m] =

{
1 m visible in fj

0 otherwise
, (6)

where j = 0 and j = 1 refer to f0 and f1, respectively.
We use a weighted bidirectional prediction of the motion

compensated reference frames, denoted as f0→t and f1→t,
whenever the location m is visible in either both or neither of
the reference frames, and switch to uni-directional prediction
whenever a location is only visible in one reference frame.

f̂t[m] =

{
(1− t)f0→t[m] + tf1→t[m] I0t [m] = I1t [m]

fj→t[m] otherwise
,

(7)
where j refers to the reference frame fj where location m is
visible.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate various aspects of the proposed
work. For the experiments, we limit the model order to
n = 2, and leave a thorough investigation of the benefits of
motion models of order n > 2 for future work. First, we
compare BAM(1) with other TFI schemes. Next, we compare
BAM(1) with BAM(2) to assess the improvement in prediction
performance achieved by employing a second-order motion
model. Lastly, we integrate the TFI scheme into a video coder,
and compare the performance with HEVC.

A. Evaluation of Temporal Frame Interpolation Performance

In a typical TFI setting, constant velocity between reference
frames is assumed. In this section, we show results on a
variety of common natural test sequences, and compare the



TABLE I
QUANTITATIVE COMPARISON OF BAM(1) WITH [3], [8], AND [4]. WE FURTHER SHOW THE
PREDICTION PERFORMANCE OF BAM(2) . BOLD INDICATES BEST PER-ROW PERFORMANCE

(BAM(2) EXCLUDED).

Sequence Frames Jeong [3] Veselov [8] Lu [4] BAM(1) BAM(2)

Cactus 007-025 33.15 (-1.07) 31.27 (-2.94) 34.12 (-0.09) 34.22 34.31 (+0.09)
Kimono 001-019 33.93 (+0.41) 33.40 (-0.13) 34.51 (+0.99) 33.53 34.07 (+0.54)
Kimono 175-193 39.97 (-1.42) 40.21 (-1.18) 39.51 (-1.87) 41.39 41.94 (+0.56)
Rushhour 049-067 35.18 (+0.41) 34.93 (+0.16) 35.30 (+0.53) 34.77 35.50 (+0.73)
Shields 101-119 35.90 (-0.30) 35.10 (-1.09) 35.89 (-0.30) 36.20 36.70 (+0.50)
Shields 385-403 33.87 (-3.88) 35.58 (-2.17) 33.52 (-4.23) 37.75 37.88 (+0.13)
Park 139-157 38.29 (-1.65) 38.84 (-1.10) 38.74 (-1.20) 39.94 39.75 (-0.19)
Parkrun 145-163 30.63 (-1.42) 30.97 (-1.07) 30.50 (-1.54) 32.04 32.20 (+0.16)
Station2 021-039 41.10 (-2.06) 41.41 (-1.75) 40.54 (-2.63) 43.16 43.26 (+0.10)
Mobcal 361-379 29.13 (-9.38) 34.75 (-3.75) 29.53 (-8.97) 38.51 38.38 (-0.13)

Average - 35.11 (-2.03) 35.65 (-1.50) 35.22 (-1.93) 37.15 37.40 (+0.25)

TABLE II
AVERAGE Y-PSNR FOR BAM(1) AND

BAM(2) ON FULL SINTEL SEQUENCES (23
INTERPOLATED FRAMES PER SEQUENCE).

Sequence BAM(1) BAM(2)

Alley 1 31.64 (-1.62) 33.26
Alley 2 32.86 (-2.02) 34.88
Ambush 7 30.58 (-5.07) 35.66
Bandage 1 31.97 (-1.26) 33.22
Bandage 2 33.82 (-2.07) 35.89
Bamboo 1 29.23 (-0.06) 29.29
Bamboo 2 28.54 (-0.81) 29.35
Market 2 28.62 (-0.96) 29.58
Shaman 2 37.58 (-1.04) 38.62
Shaman 3 37.05 (-0.01) 37.06

Average 32.19 (-1.49) 33.68
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Fig. 3. Crops of three sequences from the Sintel dataset [9]; we show the ground truth frame, followed by the predicted frame using the first order motion
and the second order motion model, denoted as BAM(1) and BAM(2). The upper right part shows the predicted frame, and the lower left part the (absolute)
difference between the prediction and the ground truth frame.

results with state-of-the-art TFI schemes [3], [8], [4]. We se-
lected 21 consecutive frames from various sequences available
on https://media.xiph.org/video/derf/, and dropped every odd
frame. The task is then to interpolate the dropped odd frames
from the existing even frames. For the BAM-TFI scheme, we
used the optical flow estimator from Xu et al. [7] to estimate
motion between the two (even-indexed) reference frames.

Table I shows quantitative results in terms of Y-PSNR. In
most of the sequences, BAM(1) outperforms the tested state-
of-the-art TFI schemes.

B. Prediction Performance of Second-Order Motion Model

Next, we employ a second motion field between each even
frame and succeeding odd frame, and evaluate the improved
prediction performance of BAM(2) compared to BAM(1).2

The last column of Table I shows quantitative results of the
BAM(2) scheme, where in addition to the motion between any
two even reference frames, we estimated motion between each
even frame and the succeeding odd frame. One can see that
in 8 out of the 10 tested sequences, BAM(2) performs better
than BAM(1) by varying amounts. Notable improvements are
achieved on sequences that contain fairly large regions that
are accelerated, such as the “Kimono” sequence, as well as
“Rush Hour” and “Shields”. Clearly, the second-order model
should be at least as good as the first order one. However,

2Note that while the odd frame is not available in a traditional TFI
framework, it is available in a coding framework, which this work builds
towards.

as mentioned earlier, the motion fields have to be temporally
consistent in order for a higher order motion model to be
meaningful, which cannot be guaranteed if the two fields are
independently estimated.

To reduce the impact of suboptimal motion estimation, we
further conducted a comprehensive experiment on challenging
sequences from the Sintel dataset [9], where forward motion
between adjacent frames (i.e., 1-hop motion) is available as
ground truth. We construct a 2-hop motion field by concatenat-
ing two 1-hop flows; for locations that move out of the frame
in the first motion field, we assume constant velocity to create
the 2-hop motion vectors. As in the previous experiment, we
drop every odd frame, and use the proposed BAM-TFI scheme
to predict the odd frames. Table II shows the average (of 23
interpolated frames) Y-PSNR on a number of sequences.

In this experiment, the BAM(2) consistently outperforms
BAM(1). Significant improvements are observed on sequences
that contain large acceleration, such as the “Ambush 7”
sequence, as well as “Bandage 1” and “Alley 2”. Fig. 3
shows crops of frames from three different sequences, which
visualize how BAM(2) predicts the actual location of objects
much better than BAM(1).

C. Integrating BAM-TFI into a Video Coder

The experiments in the previous section have shown that
BAM(2) is able to better predict the “true” position of moving
objects that are under non-constant motion. In this section,
we integrate the BAM-TFI scheme into HEVC, and provide

https://media.xiph.org/video/derf/
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Fig. 4. (a)-(c) show RD-plots for three test sequences; the x-axis show the average number of kbits per frame, and the y-axis the Y-PSNR. (d) shows a crop
of a middle frame f84 (GOP is f80 − f88) from the “Surfer Jump” sequence, decoded using HEVC at QP value of 33; (e) shows the same frame produced
by BAM(1) without residual coding. While there are differences in the splashes, the difference between (d) and (e) is hardly visible.

preliminary coding results on three sequences.
We estimate motion between the first frame (i.e., the base

frame) and eight successive frames of the group of pictures
(GOP). From these eight motion fields, we estimate a second-
order motion model, as described in Sect. II. We then predict
the seven target frames of the GOP, and code the texture
residuals using HEVC; the two reference frames are coded
in Intra-mode.3 The motion fields are coded using a modified
JPEG-2000 codec, which uses a breakpoint-adaptive wavelet
transform to conserve motion boundaries, as used in [10]. In
the current implementation, all motion fields are separately
coded; further improvements can be expected from a joint
motion field coding. Fig. 4 shows the average per-frame rate-
distortion performance for three sequences, with QP-values of
{28, 33, 38, 42}; the QP-offset for the target frame residuals
is set to 4 for all methods. We show results obtained for
BAM(1) (blue) and BAM(2) (red), as well as for HEVC using
hierarchical B-frames (yellow), and a modified version of
HEVC (purple), where only the two reference frames are used
as prediction references, as is the case in our framework.

On the “Station 2” sequence, which is dominated by
zoom-out motion, BAM(2) performs on par with HEVC. The
“Shields” sequence contains an inconsistent zoom, for which
the (credible) constant-velocity prediction of BAM(1) creates
large residuals. BAM(2) is able to much better predict the
intermediate frames, which is evidenced by the large gap
between the blue and the red curve in Fig. 4b. Lastly, we
tested the performance on the “Surfer Jump” sequence, which
contains complex motion such as splashing waves, which
is not captured in the estimated motion fields. The offset
between BAM(2) and BAM(1) is caused by the additional
motion field that has to be coded, which in this sequence
does not reduce the texture residual. While HEVC outperforms
the proposed scheme on this sequence, it is worth noting that
the interpolated frames produced by our scheme are highly
credible, as can be seen in Fig. 4e. The whole sequence
without residual coding is available on our website.4

To end the discussion, we highlight that with the proposed
framework, the frame-rate can easily be increased at the
decoder without having to re-estimate motion, which is not
possible in current video codecs.

3Reference frames could also be coded as P- or B-frames.
4http://ivmp.unsw.edu.au/∼dominicr/pcs 2016.html

V. CONCLUSIONS AND FUTURE WORK

In this paper, we show how our recently proposed motion-
centric BAM-TFI scheme can be extended to account for
higher-order motion. This is achieved by estimating at least
one additional motion field between f0 and a frame in between
the two reference frames f0 and f1. In the case of second-order
motion, these motion fields are projected onto velocity and
acceleration subspaces. Adding acceleration to the framework
opens up interesting links to compression, where the aim is
not only to create a credible interpolation, but one that is close
to the target frame to be predicted. To this end, we integrate
the BAM-TFI scheme into HEVC; preliminary coding results
are encouraging and motivate further research for seamlessly
integrating TFI with video compression systems.

In future work, we intend to add temporal regularization to
the motion field estimation to improve the temporal consis-
tency; furthermore, we will investigate the benefits of motion
models with higher order than 2.
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