

Bidirectional, Occlusion-Aware Temporal Frame Interpolation In a Highly Scalable Video Setting

D. Rüfenacht, R. Mathew, and D. Taubman

http://ivmp.unsw.edu.au

University of New South Wales

Faculty of Engineering

School of Electrical Engineering and Telecommunications

Construction of Motion Flelds

:: Bidirectional hierarchical anchoring (BIHA) [1] of motion fields at reference frames allows to **reuse** them at finer temporal levels.

Scaling of Motion fields

 $M_{a \to b} = \alpha M_{a \to c}$

Frame Interpolation

:: Frames are interpolated using bidirectional prediction, guided by disocclusion maps S.

> $S_{b\to a}(\mathbf{x})f_{a\to b}(\mathbf{x}) + S_{b\to c}(\mathbf{x})f_{c\to b}(\mathbf{x})$ $\hat{f}_b(\mathbf{x}) =$

Inferring of Motion fields $\hat{M}_{c \to b} = M_{a \to b} \circ (M_{a \to c})^{-1}$

Inferred motion fields **"follow"** their **scaled** sibling \rightarrow Geometrically consistent prediction.

Temporal Breakpoint Induction

:: Warp motion discontinuity information from reference to target frame.

 $0.5(f_{a\to b}(\mathbf{x}) + f_{c\to b}(\mathbf{x})) \quad \kappa(\mathbf{x}) = 0$

where $\kappa(\mathbf{x}) = S_{b \to a}(\mathbf{x}) + S_{b \to c}(\mathbf{x})$.

- - Use disocclusion maps to guide the bidirectional prediction of the interpolated frame.

Experimental Results

:: Experiments on synthetic data show improved performance over current state-of-the-art TFI methods, in **particular in occluded** regions.

Space

Beach

Baseball

Winter

Motion Field Inversion

:: Warp motion fields from reference to (interpolated) target frames using a **cellular affine warping** process, which is guaranteed to leave no holes.

Horizontal Component

The motion field inversion process allows to discover **important properties** the motion is undergoing.

Vertical Component

Handling Disoccluded Regions for Inferred Motion

:: Use breakpoints to identify fore-/background motion. The background motion is then **extrapolated** in the disoccluded region.

Sequence	Measure	Prop	Jeong [2]	Veselov [3]	Prop GT
baseball	PSNR	28.21	27.15	25.61	31.67
	occPSNR	23.08	21.61	19.70	26.91
beach	PSNR	31.09	31.96	29.23	34.00
	occPSNR	23.86	21.80	20.15	26.57
space	PSNR	29.47	28.34	28.67	30.52
	occPSNR	25.23	22.51	21.79	26.27
winter	PSNR	24.33	23.65	21.09	26.41
	occPSNR	19.76	17.50	15.33	22.15
Average	PSNR	28.27	27.77	26.15	30.65
	occPSNR	22.98	20.86	19.24	25.47

Conclusions and Future Work

Novel way to perform temporal frame interpolation

Bidirectional prediction with **occlusion** handling

Resolving Double Mappings

:: The foreground motion is the one which maps the motion discontinuity **B** closer to a discontinuity in the target frame.

Reference frame

Target frame

No (re)estimation of motion fields needed \rightarrow Fast

Key enabling features

- All **auxiliary information** (motion, discontinuities) **anchored** at coarse temporal levels
- Use of **motion discontinuities** to reason about scene geometry

Joint estimation of piecewise smooth motion fields with breakpoints.

References

[1] D. Ruefenacht, R. Mathew, and D. Taubman, "Bidirectional Hierarchical Anchoring of Motion Fields for Scalable Video Coding," IEEE Int. Workshop on Multimedia Signal Processing (MMSP), 2014. [2] S. Jeong, C. Lee, and C. Kim, "Motion-compensated frame interpolation based on multihypothesis motion estimation and texture optimization," IEEE Trans. on Image Processing, vol. 22, no. 11, 2013. [3] A. Veselov and M. Gilmutdinov, "Iterative Hierarchical True Motion Estimation for Temporal Frame Interpolation," IEEE Int. Workshop on Multimedia Signal Processing (MMSP), 2014.