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Abstract—We present a method to automatically detect shadows in a fast and
accurate manner by taking advantage of the inherent sensitivity of digital camera
sensors to the near-infrared (NIR) part of the spectrum. Dark objects, which
confound many shadow detection algorithms, often have much higher reflectance
in the NIR. We can thus build an accurate shadow candidate map based on
image pixels that are dark both in the visible and NIR representations. We further
refine the shadow map by incorporating ratios of the visible to the NIR image,
based on the observation that commonly encountered light sources have very
distinct spectra in the NIR band. The results are validated on a new database,
which contains visible/NIR images for a large variety of real-world shadow
creating illuminant conditions, as well as manually labeled shadow ground truth.
Both quantitative and qualitative evaluations show that our method outperforms
current state-of-the-art shadow detection algorithms in terms of accuracy and
computational efficiency.

Index Terms—Shadow detection, near-infrared

1 INTRODUCTION

A SHADOW is created when an object lies in the path of a light
source. Shadows are cast by the occluding object, or the object
itself can be shaded; a phenomenon known as “self-shading”. Due
to the difference between the light intensity reaching a shaded
region and a directly lit region, shadows are often characterized
by strong brightness gradients. While non-shadow regions are
illuminated by both direct (e.g., sunlight, flashlight) and diffuse (e.g.,
skylight, fluorescent, incandescent) light sources, shadow regions
are only illuminated by diffuse light. The change between shadow
and non-shadow regions is thus not only a brightness difference,
but a color one as well. In outdoor scenes, for example, the lit
areas are illuminated by sunlight and skylight, while the shadow
regions are illuminated by skylight alone, which creates a bluish
color cast. This property of shadows, together with the fact that a
certain color can exist in both lit and shaded objects, makes them
problematic in a number of different computer vision applications
such as tracking [1], object (or people) recognition [2], and white-
balancing [3]. In image manipulation or compositing, shadows are
often unwanted artefacts that are unavoidable due to image capture
conditions (e.g., photographs taken in an urban environment).

While shadow compositing and removal has dramatically
improved in recent years [4]–[7], automatic shadow detection is
still a challenge and requires additional assumptions or infor-
mation. Our proposed approach starts with the fact that camera
sensors are inherently sensitive to the near-infrared (NIR) spectrum
(700–1100 nm). The algorithm is based on three observations: First,
shadows are generally darker than their surroundings, in both the
visible and the NIR. Second, the majority of objects that are dark in
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the visible spectrum are much brighter in NIR. Third, most of the
considered illuminants in the shadow formation process have a
distinct behavior in the NIR. These observations lead to a shadow
detection framework, illustrated in Fig. 1, that takes visible and
NIR images as input and produces accurate binary shadow masks.
Comparing our results with two state-of-the-art shadow detection
methods [8], [9], we show that our algorithm performs better on
average, is more robust (less performance variation image-wise),
and is faster.

The algorithm works best with unprocessed (linear) RAW
images. The method, however, also provides very good results on
images already processed in-camera. Thus, the only requirement
is that both visible and NIR information is available.

Combining visible and NIR images has been successfully used to
improve various image processing and computer vision tasks, such
as skin smoothing [10], high dynamic range image rendering [11],
haze removal [12], [13], scene recognition [14], and semantic region
labeling [15]. In addition, enabling simultaneous capture of both
visible and NIR radiation with a single sensor [16], [17] is cur-
rently being researched. Because our method is computationally
inexpensive and works on RAW images, it can easily be imple-
mented in-camera to provide assistance where shadow detection is
beneficial, e.g., white-balancing or automatic image enhancement.

2 RELATED WORK

Image-based shadow detection algorithms can loosely be classified
into two categories based on the type of additional information
they employ: Semi-automatic methods that require some type of user
input, and fully automatic methods, which often make additional,
constraining assumptions about the scene in order to work properly.

2.1 Semi-Automatic Methods
A common way to sidestep the difficulty of automatic shadow
detection is to assist the detection algorithm with user-supplied
information. A number of recent and well-performing methods
incorporate user input to either “seed” or correct the detection
process. In Wu et al. [6], users are asked to submit a quad-
map containing shadow, non-shadow, and penumbra regions of
similar textures. Simplifications of these user requirements are
focused towards reducing the time spent selecting shadow and
non-shadow regions. Wu and Tang [18] employ user-supplied con-
text that indicates candidate shadow regions. Arbel and Hel-Or’s
method [4] allows a shadow mask to be calculated using only
a few keypoints, and Shor and Lischinski [5] proposed reducing
external information to one user-supplied keypoint per shadow
region. Instead of “growing” a shadow region based on a few
keypoints, Drew and Reza [19] calculate invariant images based
on a few selected patches in the image. While these detection
algorithms can provide very accurate results for still images and
deliver good subsequent shadow removal, their requirements are
strongly dependent on the complexity of the image. Moreover,
even minimal user interaction prevents a detection algorithm to
be incorporated in a fully automatic workflow, such as in-camera
image processing.

2.2 Fully Automatic Methods
2.2.1 Single-Image Approaches
Automatic shadow detection on single images has been addressed
in a variety of approaches. Gradient-based methods, where edges
are classified as either shadow or material transitions depending
on their direction and magnitudes, have been proposed in [20],
[21]. Assuming Planckian illumination, Finlayson et al. [22], [23]
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showed that greyscale illumination-invariant images could be
obtained by projecting an image’s log chromaticities in an appro-
priate direction, found by either calibration [22] or entropy mini-
mization [23]. Comparing the edge content of the original image
with the edges of the invariant one effectively yields shadow
edges. Despite their relatively simple assumptions, these methods
often work well and still are among state-of-the-art regarding auto-
matic shadow detection from a single image. However, they do not
account for simultaneous material/illumination changes, which
can limit their usefulness in more complex scenes. Lalonde et al. [7]
propose an algorithm that automatically detects ground shadows
in consumer-grade photographs. Limiting the algorithm to cast
shadows on the ground allows them to focus on a limited set
of materials and learn the shadow appearance on those materials
from a labelled set of images. Tian et al. [24] make similar assump-
tions to [22], but in addition employ a trichromatic attenuation model
(TAM). They first oversegment the image, and then apply the
TAM model to decide whether a segment is in the shadow or
not. The use of several thresholds, however, makes this approach
fairly unstable. In [8], they improve the TAM model, no longer use
segmentation and only compute a single threshold, which yields
much improved results. Different to the previous methods, Guo et
al. [9] explicitly model the material and illumination relationships
of pairs of regions. They employ a segmentation-based approach,
and learn their classifiers from training data. Both [8] and [9] com-
pute a binary shadow mask, which allows for a fair comparison
to our method.

2.2.2 Multi-Image Approaches
To minimize the ambiguities induced by simultaneous material
and illumination changes, some research has focused on multi-
image methods. For instance, flash/no-flash image pairs can be
combined to either estimate the illuminant [25], [26], or to remove
shadows [27]. The chromagenic illuminant estimation of Finlayson
et al. [28] postulates that capturing two images of a given scene,
using a broadband colored filter to capture the second image, and
comparing them adequately, produces accurate illumination maps.
In the right context, these multi-image algorithms perform remark-
ably well, although their context can be limited: flash cannot
illuminate all outdoor shadows, and the chromagenic approach
requires image segmentation, an accurate training step, and every
pair of trained illuminants needs to be tested. On the other hand,
the chromagenic approach is not limited to shadows, and can
incorporate a number of multi-illuminant scenes.

Closer to our method, Teke et al. [29] create a false-color image of
satellite imagery by replacing the blue channel of the RGB image with
NIR. By analyzing the difference between saturation and intensity
of the false-color image, and subsequent independent processing of
vegetation regions, they are able to obtain shadow maps for remote
sensing applications. While their method employs near infrared
information, it does not make use of its relationship to the visible
spectrum and is limited to remote sensing environments. Currently,
we use a multi-image approach, as we capture the visible and the
NIR part of the spectrum separately. The feasibility of a visible
plus NIR sensor shown in [16], [17] motivates our belief that in the
near-future, digital camera sensors will jointly capture visible and
NIR, which will turn our method into a single-image approach.

3 NEAR-INFRARED IMAGING

Silicon, the photosensitive component of a digital camera’s sensor,
is intrinsically sensitive not only to visible light (∼400–700 nm),
but also to NIR (∼700–1100 nm). In fact, its sensitivity is such
that a specifically designed filter (often called a hot mirror) has
to be placed in front of the sensor to prevent NIR contamination
of the visible images. This filter is necessary for both monochro-
matic and color cameras, because the filter colorants employed to

create the color filter array (CFA) are also transparent to the NIR.
Fig. 2(a) shows the normalized quantum efficiencies we measured
of a Canon EOS 5D Mark II without its hot mirror. By removing
the hot mirror, both the visible and NIR part of the spectrum can
be captured. However, in order to obtain useful information, the
visible and NIR signals that reach the imaging sensor need to be
separated. One way of doing so is to employ a beamsplitter to
separate visible wavelengths from NIR ones and two (or more)
cameras or sensors to capture a portion of the spectrum only [11].
This method is quite expensive, and has a substantial light loss
induced by the beamsplitter. Another, single camera approach con-
sists in first capturing a color image by putting a NIR-blocking
filter in front of the lens, and then an NIR image by placing a visi-
ble light blocking filter in front of the lens. In this work, we used a
characterized Canon EOS 5D Mark II with a sequential approach
to capture the visible/NIR image pairs. Fig. 2(b) and (c) show the
measured quantum efficiency of the camera with filters placed in
front of the lens. Samples of color/NIR image pairs can be found
in Fig. 7.

4 SHADOW DETECTION ALGORITHM

Shadows are, almost by definition, darker than their surroundings.
However, just equating shadows with dark regions is short-
sighted because all dark objects will become potential shadows
and result in imprecise shadow masks. NIR possesses some impor-
tant properties that make the shadow candidate selection more
accurate. Spectral studies of natural and man-made surfaces and
colorants [30], [31], [32], show that in general:∫

VIS
S(λ)QR,G,B(λ)dλ <

∫
NIR

S(λ)QNIR(λ)dλ, (1)

i.e., the reflectance S(λ) times quantum efficiency Q(λ) in the NIR
is greater than in any of the RGB channels. Two notable excep-
tions are water, which has an absorption band in the NIR, and
carbon black, a colorant often encountered in black plastic objects,
where both NIR and the visible bands have a similar, almost zero
reflectance. The implication of Equation 1 is that NIR informa-
tion can disambiguate a number of otherwise problematic dark
objects/surfaces.

Fig. 1 shows a block diagram of our shadow detection algo-
rithm. The input: the averages of the three RGB channels (Eq. 3)
of unprocessed, linear RAW color and NIR images are normal-
ized and compressed by applying a non-linear mapping function
f and inverted (green path). These two maps are then multiplied
to form a shadow candidate map. To refine the results, we addition-
ally compute a color to NIR ratio map (orange path), which ensures
that these candidates are indeed shadow-related instead of simply
being dark objects. The shadow candidate map and the color to NIR
ratio map are then multiplied to form a shadow map (purple path). A
binary shadow mask can be obtained by adaptively thresholding
the shadow map.

4.1 Shadow Candidates
In the following, we use the notation aij to denote the value of pixel
at location (i, j) of an image/map A of m rows and n columns. Let
pk

ij be the normalized sensor response, i.e.,

0 ≤ pk
ij ≤ 1, k ∈ {R, G, B, NIR}. (2)

In other words, pk
ij are the normalized RAW measurements of the

camera sensor, without any processing applied. We first create a
brightness image L from the visible image by calculating for each
pixel lij the average over the three color channels:

lij =
pR

ij + pG
ij + pB

ij

3
. (3)
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Fig. 1. Our proposed framework. We use both information from the visible and the NIR part of the spectrum to compute a shadow candidate map. The results are refined
by combining this map with a color to NIR ratio map. The shadow map is thresholded to obtain a binary shadow mask.

The pixels of the temporary dark maps DVIS and DNIR are
computed as follows:

dVIS
ij = f (lij) ; dNIR

ij = f (pNIR
ij ), (4)

where f is a non-linear mapping function that compresses the
shadows and highlights, which allows us to mark fewer but bet-
ter controlled pixels as shadow candidates. At the same time, we
invert the image so that shadows are found in the bright parts of
the shadow map. Formally, the non-linear mapping function can
be written as:

f (x) = 1

1 + e−α(1−x
1
γ −β)

, (5)

where α influences the slope of the sigmoid function, β sets the
inflection point, and γ (> 1.0) allows to stretch the histogram in the
dark parts before applying the sigmoid function. All of the results
obtained and presented here have the same values for the three
parameters. β = 0.5 to keep the inflection point centered, and γ =
2.2 to mimick the non-linearity of common color encodings. The
value for α = 14 was obtained by optimization over our dataset.

The non-linear mapping function f acts as a tone mapping func-
tion in addition to reversing the tonal values to obtain a map where

Fig. 2. Measured quantum efficiencies of red, green, and blue of a Canon EOS 5D
Mark II without hot mirror and (a) no filter, (b) with a NIR-blocking filter (B+W 486),
and (c) with a visible light blocking filter (B+W 093). The quantum efficiencies are
normalized to 1.

Fig. 3. Effect of the non-linear mapping function. (a) Input NIR image. (b) Non-
linear mapping function f . (c) Output image with compressed dark (and bright)
parts.

the shadow candidates have high value. In digital camera process-
ing, RAW images, which are linear with respect to scene radiance,
are always non-linearly mapped to obtain the conventional sRGB
output images. This step is called tone mapping, and is usually
scene dependent [33]. There are many ways to implement the non-
linear scaling [34], such as applying a power (gamma) function or
a sigmoid function, as is used here. Fig. 3 shows our non-linear
mapping function, as well as the result of applying it to a sam-
ple image. Note that the dark and bright parts are inverted and
more pronounced after the non-linear mapping function has been
applied.

Because darkness in both visible and NIR images is a condi-
tion of shadow presence, we compute the pixels dij of the shadow
candidate map D as:

dij = dVIS
ij dNIR

ij . (6)

The importance NIR images can have in disambiguation is evi-
denced in Fig. 4. A black sweater lies partly in the shade, but since
its colorant is transparent to the NIR wavelengths, the shadow is
clearly seen in DNIR.

Fig. 4. (a) Visible image. (b) Visible shadow candidate map DVIS. (c) NIR shadow
candidate map DNIR. (d) Shadow candidate map D. Even though the presence of
a black object in the scene confounds DVIS, D is quite accurate thanks to DNIR.
Images are tone mapped for better visibility.
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Fig. 5. (a) Visible image. (b) Near-infrared image. (c) Ratio image T that already
outlines the shadows (images tone mapped for better visibility).

4.2 Color to NIR Ratios
The shadow candidate map D provides encouraging results. In
order to refine the map, we calculate color to NIR ratios. The key
insight here is that the difference between the visible and NIR
bands for many shadow creating illuminants is distinctive [35].

In this work, we consider the most common shadow creating
scenarios for outdoor scenes (i.e., sunlight/skylight), and indoor
scenes (i.e., flash/fluorescent, flash/incandescent, and uncontrolled
indoor illumination). Let us focus in the following on the case of
outdoor shadows, noting that the arguments are similar for indoor
illumination. Irrespective of the difference in light intensity due to
occluding objects, we note that skylight emits less in the NIR com-
pared to the visible, while sunlight actually emits approximatively
as much energy in the NIR than in the visible band. It follows that:∫

VIS
Esky(λ)Qk(λ) �

∫
NIR

Esky(λ)Qk(λ) (7)
∫

VIS
Esun(λ)Qk(λ) ≈

∫
NIR

Esun(λ)Qk(λ), (8)

where E(λ) is the illuminant spectral power and Qk(λ) is the sen-
sor sensitivity, k = {R, G, B}. We use this observation and calculate
image ratios that can have a significant impact on shadow detec-
tion. Specifically, we compute the pixel tij of a ratio image T as:

tk
ij =

pk
ij

pNIR
ij

(9)

tij =
1
τ

min(max
k

(tk
ij), τ ); (10)

where τ sets an upper bound to the value tij can take, since tk
ij

goes to infinity when pNIR
ij approaches 0. We obtained the best

results for a value of τ = 10. The max operator is there because
scene reflectances can often have very low values in one or two
of the color channels, although rarely in all three. From Equations
7 and 8 we can deduce that for sunlit regions tk

ij ≈ 1, while for
skylit regions tk

ij > 1, because the difference in illumination far
outstrips the difference in reflectances in the shade. We normalize
tij to be between [0, 1]. Examples of visible and NIR images and
their corresponding ratio maps are shown in Fig. 5.

Note that T alone is not sufficient to detect shadows due to
potential variability of reflectances in the visible and NIR image.

4.3 Binary Shadow Mask
The shadow map D from Equation 7 contains all the possible
shadow pixels, but it can also include dark objects. If both the visi-
ble and NIR pixel values of a given object are dark, then T will ade-
quately be able to discriminate between a dark object and an actual
shadow. Since both D and T are in the range [0, 1], we can compute
the elements uij of the shadow map U in the following way:

uij = (1 − dij)(1 − tij). (11)

Fig. 6(b) shows an example of a shadow map U.
We use the continuous shadow map U to derive a binary

shadow mask. We thus need to find the optimal threshold θ that
best separates the shadow from the non-shadow pixels. In order

Fig. 6. (a) Visible image. (b) Shadow map U. (c) Histogram of U showing the
location of the first valley. (d) Its binary version Ubin, obtained by thresholding at θ

(red vertical line).

to reduce the influence of noise, we compute the histogram of U
with Nbins:

Nbins = η�log2(mn) + 1	, (12)

where m and n are the height and the width of the image. Note
that if η = 1, the above formula corresponds to Sturge’s rule. We
found that best results are obtained with η = 1.6. The threshold θ

is set at the location of the first valley in the histogram. Similar to
Shor and Lischinski [5], we define the first valley as the smallest
valued bin of the histogram where the two neighboring bins to the
left and the two to the right have larger, increasing values. If there
is no valley according to our definition, we gradually increase the
number of bins until such a valley is found.

The shadow value of each pixel ubin
ij is given by:

ubin
ij =

{
1 if uij ≤ θ

0 otherwise.
(13)

The thresholding process is illustrated in Fig. 6, where an accurate
binary shadow mask is obtained.

5 RESULTS

We evaluate our algorithm both qualitatively and quantitatively,
and compare it to the two state-of-the-art shadow detection meth-
ods by Tian et al. [8] and Guo et al. [9], which also output binary
shadow masks. Guo’s method is segmentation based, whereas
Tian’s method is pixel-based. Fig. 7 shows the shadow masks for
all three methods. We note that both [8] and [9] only require the
use of a single color image. We use the code provided by the
authors to produce the results reported in this paper.

5.1 Image Database and Ground Truth
As there is no standard dataset of visible-NIR images for shadow
detection, we created a new image dataset in order to evaluate
our method and compare it with others. Our dataset consists of 74
images, under different illumination pairs (42 outdoor, 32 indoor).
All the images were taken using a modified Canon EOS 5D Mark II
with the sequential technique described in Section 3. The VIS/NIR
pairs are aligned and subsampled by a factor of 4 in both dimen-
sions. In order to properly evaluate our results and to arrive at
an objective comparison, a person naive to our research manually
created binary ground truth for the 74 images. All of the image
dataset and the ground truth, as well as the Matlab code used to
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Fig. 7. Input images (visible and NIR, tone-mapped for better visibility), our manually labelled ground truth, as well as our resulting shadow masks, compared to
Tian et al. [8] and Guo et al. [9]. Additional results are shown on our website1.

produce all reported results, are fully available online1. A subset
of the created ground truth maps is shown in Fig. 7. We note that
for outdoor images with complex shadows, it can sometimes be
difficult even for a human to ascertain whether a specific pixel is
a shadow or not.

5.2 Quantitative Results
Our dataset contains a variety of images of both indoor and out-
door scenes, ranging from simple scenes containing few, clear
shadows to very complex ones. Table 1 summarizes numeri-
cal results, which were obtained by comparing the computed
mask with the ground truth mask on a pixel by pixel basis.
We compute both the overall accuracy (Acc, in percentage),
as well as Matthews correlation coefficient (MCC) [36], which
is a more balanced measure if the two classes have different
sizes.

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, (14)

where TP, TN, FP, and FN are the true positives, true negatives,
false positives, and false negatives, respectively. The value of the
MCC is between {−1, 1}, where larger values indicate better pre-
diction. We present the results for all outdoor images (42 images),
for indoor images taken using a flash and both incandescent and
fluorescent as diffuse light source (16 images, 8 flash/fluorescent
and 8 flash/incandescent), and uncontrolled indoor images that
were shot indoors but without controlled illumination (16 images).
The last row reports the average accuracy over the entire dataset.

6 DISCUSSION

Our shadow detection method has the best overall accuracy and
MCC for all images. Additionally, the standard deviation of both
the accuracy and the MCC is much lower than for the two other
methods (accuracy σ = 8.5 for our method compared to σ = 17.6

1http://ivrg.epfl.ch/research/nir/shadowdetection

for [8] and σ = 22.6 for [9]), indicating that our method is more
robust and has fewer failure cases.

The inherent problem of shadow detection methods that use
segmentation, such as Guo et al., is that if the segmentation fails to
segment regions that are in the shadow from regions that are not in
the shadow, the shadow detection will not be correct, as illustrated
in Fig. 7(b), where the black sweater is completely missed. Tian et
al.’s method, on the other hand, labels the whole sweater as being
in shadow. Segmentation-based shadow detection algorithms also
tend to have problems in highly textured regions, which are quite
common, especially in natural outdoor scenes. This is also reflected
in our results, where Guo et al. performed better on the images of
scenes that contain simpler shadows, such as in Fig. 7(a), (d), and
(g), and fails for more complex ones such as Fig. 7(b), (c), and
(f). While Tian et al.’s method is almost on par with our method
for outdoor images and performs slightly better on the uncon-
trolled indoor images, our method outperforms them on the flash
indoor images. This is due to the fact that their tricolor attenu-
ation model, which forms the basis for their shadow detection

TABLE 1
Quantitative Comparison of the Three Methods, on the Outdoor (42
Images), on the Indoor (8 Flash/Fluorescent, 8 Flash/Incandescent),

and the Indoor Uncontrolled Illumination (16 Images) Sets,
As Well As for All 74 Images

Note that [8] and [9] only employ visible information.
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Fig. 8. Failure case where the "correct" valley is not found. (a) Histogram of U. (b)
Ubin using automatic θ (red line). (c) Ubin using better θ (green line).

algorithm, is computed based on outdoor light sources. The rea-
son their method is working very well on the uncontrolled indoor
image set is probably that the most predominant light source in
these scenes is still the sun, as exemplified in Fig. 7(g).

6.1 Limitations
Despite the high performance of our algorithm, there are some
limitations. For instance, current photographic cameras are not
designed to simultaneously capture visible and NIR information.
Additionally, there are some failure cases, inherent to the assump-
tions we make. In particular, Equations (7) and (8) can be violated:
if a material has much lower reflectance in the NIR than in the vis-
ible (e.g., water), it may be wrongly detected as shadow. Similarly,
for a material that has a much higher reflectance in the NIR than the
visible (e.g., vegetation), the shadows can be underestimated (tree
in Fig. 7(f)). Discriminating shadows from very dark, or underex-
posed, regions is a common problem in shadow detection. Finally,
while generally reliable, the valley detection process can overshoot
(see Fig. 8).

6.2 Computation Time
Shadow detection is usually a preprocessing step for various prac-
tical applications, including shadow removal, segmentation, and
white balancing. Because some of these applications have to be
performed in camera, the computation time of the shadow detec-
tion algorithm matters. We ran all three algorithms on a computer
with Intel R© Core i7-2620M 2.7Ghz CPU with 4 GB RAM, and using
Matlab R2011b. The images have an average resolution of 1404 x
932 pixels. Table 2 shows the average computation time per image
as well as the standard deviation for the tested methods.

Our method is an order of magnitude faster, and computation
time does not depend on image content as it is a non-iterative
method, which manifests itself by the much smaller standard
deviation. Tian et al.’s [8] takes around 30 times longer than
our method, and Guo et al.’s [9] method is far away from real-
time, even though the time-consuming parts of their method are
implemented in optimized Mex-files.

6.3 Performance on Processed Images
We have explained our approach using RAW images. Cameras,
however, may only output processed visible/NIR image pairs.
By processed we mean white-balanced, gamma-corrected and
black-/whitepoint corrected images. For comparison, we thus pro-
cessed our RAW images to output-referred sRGB images [37]. As
the resulting images are already white-balanced, we applied our
algorithm without the color to NIR ratio map.

We also changed the value of γ to 1.0 in the non-linear mapping
function of Equation 5 in order to reflect that the processed sRGB

TABLE 2
Comparison of the Computation Time for the Different Methods

TABLE 3
Comparison of Our Method on RAW and Processed sRGB Images

images are already gamma-corrected. The results are shown in
Table 3.

7 CONCLUSION

While intrinsically available to digital cameras, near-infrared infor-
mation is currently not acquired nor used. In this paper, we have
presented a shadow detection algorithm that outputs high-quality
shadow maps by employing conjoint visible and near-infrared
images. The relative transparency of colorants to NIR and the
physics of common light sources enable us to compute color to NIR
ratio maps that, coupled with simple heuristics, provide binary
shadow masks that are reliably more precise than existing state-of-
the-art techniques. Because of its simplicity, our shadow detection
method runs significantly faster than competing techniques. Our
algorithm can detect shadows in a variety of complex illumination
conditions, as shown in the content of our visible-NIR image pairs
dataset (available online).
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