
Temporally Consistent High Frame-Rate
Upsampling with Motion Sparsification

Dominic Rüfenacht and David Taubman
Interactive Visual Media Processing Lab (IVMP)

School of Electrical Engineering and Telecommunications, UNSW, Sydney, Australia
{d.ruefenacht, d.taubman}@unsw.edu.au

Abstract—This paper continues our work on occlusion-aware
temporal frame interpolation (TFI) that employs piecewise-
smooth motion with sharp motion boundaries. In this work, we
propose a triangular mesh sparsification algorithm, which allows
to trade off computational complexity with reconstruction quality.
Furthermore, we propose a method to create a background
motion layer in regions that get disoccluded between the two
reference frames, which is used to get temporally consistent
interpolations among frames interpolated between the two refer-
ence frames. Experimental results on a large data set show the
proposed mesh sparsification is able to reduce the processing
time by 75%, with a minor drop in PSNR of 0.02 dB. The
proposed TFI scheme outperforms various state-of-the-art TFI
methods in terms of quality of the interpolated frames, while
having the lowest processing times. Further experiments on chal-
lenging synthetic sequences highlight the temporal consistency in
traditionally difficult regions of disocclusion.

I. INTRODUCTION

Video capture and display technology has improved consid-
erably over the last years [1], which creates new challenges
and opportunities for video compression and temporal frame
interpolation (TFI) algorithms. For example, larger resolutions
and higher frame-rates result in video content that contains
much higher spatial frequency content, which motivates the
use of more advanced motion models. While this paper is
focusing on TFI, we believe that video compression and
interpolation can be seamlessly integrated in the future.

Partly due to their low computational complexity and
straightforward implementation, most existing TFI methods
employ block-matching algorithms; we refer to [2] for an
extensive review. Inherent block-artefacts in the interpolated
frames are mitigated using so-called overlapped block motion
compensation (OBMC) [3]. The downside of OBMC is that it
unnecessarily lowers the high-frequency content of the final
interpolated image. To further improve the quality of the
upsampled frames, best-performing TFI schemes employ time-
consuming texture optimization steps on the interpolated frame
[4]. Veselov and Gilmutitdinov [5] propose a bilateral motion
estimation scheme which finds the best motion vector for
each block in the target frame grid; there is no occlusion-
handling, and frame-rates can only be doubled. In higher

2016 IEEE 18th International Workshop on Multimedia Signal
Processing (MMSP), Sept.21–23, 2016, Montreal, Canada.
978-1-4799-5896-2/14/$31.00 c©2016 IEEE.

resolution content, the size of disoccluded regions becomes
larger, and hence an appropriate occlusion handling becomes
more critical. Lu et al. [6] propose a block-based TFI method
where they identify occluded regions, and propose a weighted
OBMC to interpolate the upsampled frame.

Recent advances in optical flow estimation both in terms of
quality [7], as well as reduction in computational complexity
[8], motivate employing optical flow fields for frame interpo-
lation. Herbst et al. [9] compute both a forward and backward
optical flow between the two reference frames (reference-
anchored motion), and then bidirectionally interpolate the
target frame by independently mapping texture information
from the two reference frames. Raket et al. [10] propose a
symmetric total-variation (TV-L1) optical flow at the target
frame. While this target-anchored motion only requires the
estimation of one flow field, it is not possible to explicitly
handle disoccluded regions.

All reference-anchored TFI methods with bidirectional pre-
diction we are aware of require the computation of a forward
and a backward flow between the two reference frames. In
contrast, the proposed TFI scheme only requires the forward
flow, and the backward flow is constructed through an opera-
tion we call motion inference; this process not only halves the
computation time for motion estimation, but also has an impact
on the geometrical consistency of the bidirectional prediction
process, as discussed in [11].

The proposed method inherits key properties from our
earlier work on TFI [12]; in particular, we use information
about motion discontinuities to handle regions around moving
objects (i.e., disocclusions and double mappings). The two
main contributions of the present work are:
• Triangular mesh sparsification, which adapts the triangle

size of the affine mesh based on motion complexity
(Sect. III); this reduces the computational complexity (see
Sect. VII-A) of the triangle mapping process, which is the
most time-consuming part of the proposed method;

• We create a background motion layer in regions that get
disoccluded between the reference frames (Sect. V-A),
which allows for temporally consistent interpolation;

To the best of our knowledge, the proposed base-anchored
mesh BAM-TFI scheme is the first to address the problem of
temporal consistency of an arbitrary number of interpolated
frames in traditionally problematic regions around moving
objects.

Fig. 1. Overview of the proposed base-anchored mesh (BAM) TFI method.
We refer to the text for a description of the different parts.

II. METHOD OVERVIEW AND NOTATIONS

In this section, we give an overview over the proposed base-
anchored motion (BAM-TFI) method, and introduce notation
used throughout the paper; we use Fig. 1 to guide the overview.
Inputs to the method are two base frames f0 and f1, and the
(estimated) motion field between them, M0→1; the notation
Mi→j is used throughout the paper to denote a motion field
anchored at frame fi, pointing to frame fj . From the two
reference frames and the motion field connecting them, the
aim is to interpolate frames fα at time instance α ∈ [0, 1];
for example, the standard case of doubling the framerate that
is considered in the literature is obtained by setting α = 0.5.
We highlight that the proposed framework allows for arbitrary
upsampling factors.

The quality of the proposed method depends on the quality
of the input motion fields. In particular, the motion fields needs
to have sharp discontinuities around moving object boundaries;
this is because we use motion discontinuity information to
reason about foreground objects in order to resolve double
mappings and disoccluded regions. For this purpose, we
estimate a disocclusion and folding map (DFLM) on input
motion fields Mi→j , denoted as D̂i→j , which is based on the
divergence of the motion field.

We start by applying a triangular mesh sparsification al-

Fig. 2. Illustration how triangles of the base mesh and mapped meshes are
linked via motion vectors. Dashed red arrows show base anchored motion,
whereas green solid lines show mapped mesh motion for Mα, which links
each vertex of the mesh with the preceding and succeeding reference frame.

gorithm (see Sect. III), which partitions the base motion
field M0→1 into a base mesh B0. This base mesh holds a
collection of K vertices {V k0 }, k ∈ {0,K−1}, each of which
holds motion vectors u0→α(V

k
0) “linking” f0 with any fα

we wish to interpolate (under constant motion assumption); in
addition, it holds motion vectors for the special case of α = 1,
which links f0 with f1. These vertices are connected to form
triangles, whose affine motion approximates the underlying
motion field. While around moving object boundaries, even a
triangle of size 1×1 is not able to describe the motion because
of the discontinuity, one can expect that the affine motion
from relatively large triangles is able to well approximate the
“correct” motion within objects.

In the proposed scheme, we also use the concept of a
mapped mesh Mα, which is obtained by mapping the base
mesh B0 to frame fα. The main difference between a mapped
mesh and the base mesh is the motion vectors its vertices hold.
The mapped mesh contains vertices whose motion vectors
uα→0(V

k
α) and uα→1(V

k
α) link it with both the preceding

and the succeeding reference frames f0 and f1, respectively;
this is illustrated in Fig. 2. Sect. IV is concerned with the
fundamental operation of obtaining mapped motion vectors.
Setting α = 1, we map the base mesh from f0 to f1; the
importance of the obtained M1 is that it reveals regions
that get disoccluded between the two reference frames. Those
are the regions for which no motion vector exists, and need
special care in order to obtain a temporally consistent motion
assignment. For such regions, we produce a “background”
motion layer by adding new vertices to the base mesh that
follow background motion. The purpose of this additional
background layer is that if mapped to intermediate frames fα
in between the two base frames, temporally consistent motion
will be assigned in disoccluded regions for varying values of
α; this is illustrated in the bottom row of Fig. 1.

In Mα, triangles might overlap in regions where a fore-
ground object moves on top of a background object. We use
the DFLM (second row of the figure) to resolve such double
mappings. Using a triangle ID check to identify regions that
are not visible in either of the reference frames, we are able
to switch from bidirectional to unidirectional prediction of the
interpolated target frame(s) fα in regions that are only visible
in one of the reference frames.

(a) Triangular Basemesh (b) Crop

Fig. 3. Example basemesh created by the proposed mesh sparsification
algorithm, superimposed on the (color-coded) dense motion field. Around
motion discontinuities, triangles are split up to 1× 1, whereas they are larger
in regions of smooth (affine) motion.

III. TRIANGULAR MESH SPARSIFICATION

In our earlier works ([11], [12]), we employed a triangular
mesh with a fixed triangle size of 1× 1. In regions of smooth
motion, one can expect that the triangle size can be increased
without significantly degrading the quality of the motion field.
We note that we employ an indexed mesh structure, which
allows for an efficient GPU implementation in the future.

Besides its positive impact on computational complexity,
sparsifying the motion field has other interesting benefits
when it comes to compression. In the long term, we envisage
the proposed TFI method being used in a (highly scalable)
video compression system, for which sparsity translates to
compressibility; we leave this interesting direction for future
research.

Algorithm 1 shows the pseudocode of the proposed trian-
gular mesh sparsification algorithm. We start by partitioning
M0→1 into cells of size L, where L is the largest allowed
cell size. Then, each cell is split up into two triangles Ti,j,p,L,
where (j, i) denote the upper left coordinates of the cell, and
p = 0 or p = 1 are used to distinguish between the upper left
and the lower right triangle of the cell. In other words, the
coordinates of the three vertices of a triangle Ti,j,p,L are:

V 0
Ti,j,p,L

(x, y) = (j + L, i)

V 1
Ti,j,p,L

(x, y) = (j, i+ L)

V 2
Ti,j,p,L

(x, y) =

{
(j, i) if p = 0

(j + L, i+ L) if p = 1

(1)

Essentially, the proposed mesh sparsification algorithm
starts with a largest cell size L = 2N , and splits the triangles
of each cell up until they are “smooth”. In this work, a triangle
Ti,j,p,L is considered smooth if for all (integer) locations m
covered by the triangle, the interpolated motion uaff [m],
obtained by affine interpolation of the motion of the three
vertices of the considered triangle, predicts the original motion
u[m] with a prediction error lower than thresh; in the
proposed work, we set thresh = 1

2 . Every triangle gets
assigned a unique identifier (TID), which will be useful for
creating visibility masks (see Sect. VI-B).

Algorithm 1 Mesh Sparsification Algorithm
1: procedure CREATESPARSETRIANGULARMESH
2: L← 2N . Start with largest cell length
3: for i = 0 to height step L do
4: for j = 0 to width step L do
5: CREATESMOOTHTRIANGLE(Ti,j,0,L)
6: CREATESMOOTHTRIANGLE(Ti,j,1,L)
7: end for
8: end for
9: end procedure

10: function CREATESMOOTHTRIANGLE(Ti,j,p,L)
11: if ‖u[m]− uaff [m]‖2 < thresh ∀m ∈ Ti,j,0,L then
12: Create triangle Ti,j,p,L, assign unique TID
13: else
14: L← L/2 . Assign new cell length
15: if p == 0 then . Split upper left triangle
16: CREATESMOOTHTRIANGLE(Ti,j,0,L)
17: CREATESMOOTHTRIANGLE(Ti,j,1,L)
18: CREATESMOOTHTRIANGLE(Ti,j+L,0,L)
19: CREATESMOOTHTRIANGLE(Ti+L,j,0,L)
20: else . Split lower right triangle
21: CREATESMOOTHTRIANGLE(Ti+L,j,1,L)
22: CREATESMOOTHTRIANGLE(Ti,j+L,1,L)
23: CREATESMOOTHTRIANGLE(Ti+L,j+L,1,L)
24: CREATESMOOTHTRIANGLE(Ti+L,j+L,0,L)
25: end if
26: end if
27: end function

IV. MESH MAPPING: INVERSION AND INFERENCE

We now describe how from the base mesh B0, we construct
a mapped mesh Mα at any time instance α in between the
two reference frames. In particular, we present how mesh
inversion and inference enable us to obtain motion relating
each vertex of the mapped mesh with corresponding locations
in the preceding and the succeeding reference frame (see
Fig. 2).

Let ui→j(V ki) denote the motion vector of vertex k at time
instance i, pointing to the corresponding location of the vertex
V kj at time instance j.

Then, the motion relating any vertex V kα of the mapped
mesh Mα to its location in the preceding reference frame f0
(V k0) is obtained via scaling (by α) and inversion of the base
mesh motion vectors:

uα→0(V
k
α) = −u0→α(V

k
0)

= −αu0→1(V
k
0).

(2)

The motion relating V kα to the corresponding location in the
succeeding reference frame f1 (V k1), is obtained performing
an operation we call mesh inference:

uα→1(V
k
α) = uα→0(V

k
α) + u0→1(V

k
0)

= −αu0→1(V
k
0) + u0→1(V

k
0)

= (1− α)u0→1(V
k
0).

(3)

(3) exposes how motion vectors uα→1 are obtained via com-
position of scaled and inverted uα→0 (2) and the “parent”
motion u0→1; this intimately links the forward and backward

(a) Base mesh B0 (b) M1

(c) B0 + BG (d) M0.75

Fig. 4. Illustration of the disocclusion region motion backpropagation
algorithm; we refer to the text for details.

pointing motion fields and guarantees geometrical consistency
of the bidirectional prediction process.

V. TEMPORAL CONSISTENCY AROUND MOVING OBJECTS

In the previous section, we have shown how the base mesh
can be mapped to any target frame fα. In this mapped mesh
Mα, on the leading side of moving objects, there will be
regions where foreground triangles overlap with background
triangles. Furthermore, in regions on the trailing side of
objects in motion (disocclusion), the affine interpolated motion
between foreground and background vertices is non-physical.
In Sect. V-A, we show how to assign more realistic motion in
disoccluded regions by creating a background motion layer;
in Sect. V-B, we explain how the foreground triangle can be
identified in regions where multiple triangles overlap.

A. Creating a Background Motion Layer in Disoccluded Re-
gions

One of the most difficult aspects for ensuring temporal
consistency is in regions that get disoccluded between the two
reference frames. Most existing TFI methods use heuristics
to fill in such regions, which can lead to visually disturbing
artifacts when the upsampled video is viewed. The higher
the frame upsampling factor, the more critical a temporally
consistent interpolation in disoccluded regions becomes, since
inconsistent motion can lead to visually disturbing artefacts.
With the aid of Fig. 4, we outline the proposed procedure of
obtaining temporally consistent motion in disoccluded regions.

Under the constant-velocity assumption that any TFI method
using two reference frames is making, the area of disocclusion
is monotonically increasing as objects transition from the
preceding reference frame f0 to the succeeding reference
frame f1. This implies that mapping the motion from f0
to f1 exposes all regions that get disoccluded, as shown in
Fig. 4b. We want to find the object boundary in the succeeding
reference frame, which outlines the end of the disoccluded
region. We split up triangles at the motion discontinuity in
f1 by creating new vertices. We then assign extrapolated
background motion to such “split” vertices. If mapped back

to the base mesh B0, they create a background motion layer;
this is illustrated in Fig. 4c, where in addition to the fore-
ground motion, there is an additional background motion layer
(dashed green lines). The motion of this layer will be applied
in all regions of the target frame fα that otherwise have no
motion assigned (solid green region in Fig. 4d).

B. Identifying Local Foreground Triangles

In the mapped mesh Mα, triangles belonging to the fore-
ground object might overlap with triangles of the background
object; this happens on the leading side of moving objects. We
resolve such double mappings using the same insight as used
in our earlier work [12]. In essence, the motion of the triangle
in the preceding reference frame which maps the motion
discontinuity from D̂0→1 closer to D̂1→2 is identified as
the foreground triangle; this is because motion discontinuities
“travel” with the foreground object. The main difference is that
whereas in our earlier work, double mappings were resolved
on a per-pixel basis, here we resolve them on a per-triangle
basis, which is particularly useful in regions of smooth motion.

We store this important information about foreground trian-
gle IDs in a foreground TID map, denoted as Fα; any integer
location m that is covered by the identified foreground triangle
gets assigned the corresponding triangle ID.

VI. WEIGHTED, OCCLUSION-AWARE FRAME
INTERPOLATION

We now explain how the mapped mesh Mα is used to
perform an occlusion-aware, bidirectional interpolation of the
target frame fα.

A. From Mapped Mesh to Prediction Motion Fields

Once all double mappings inMα are resolved, we compute
the backward and forward prediction motion fields M̂α→0 and
M̂α→1. This is done by assigning each integer location m the
affine interpolated motion (uaffα→k) of the foreground triangle:

M̂α→k[m] = uaffα→k(m). (4)

B. Visibility Mask

We use triangle IDs (TID) to assess whether a particular
location m is hidden in either of the reference frames. This
is done by a simple check whether the identified foreground
TID at location m in fα (i.e., Fα[m]) is the same as the one
if m is mapped to f0 or f1 using M̂α→k[m]. We compute a
visibility mask Ikα[m] which stores this important information:

Ikα[m] =

{
1 Fα[m] = Fk

[
m+ M̂α→k[m]

]
0 otherwise

, (5)

C. Motion-Compensated Temporal Frame Interpolation

We use a weighted bidirectional prediction of the motion
compensated reference frames, denoted as f0→α and f1→α,
whenever the location m is visible in either both or neither of
the reference frames, and switch to uni-directional prediction
whenever a location is only visible in one reference frame.

12 4 8 16 32 64
36.9

37

37.1

37.2

37.3

37.4

max cell size L

PS
N

R
[d

B
]

12 4 8 16 32 64
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

av
er

ag
e

tim
e

pe
r

fr
am

e
[s

]

Fig. 5. Comparison between average per-frame processing time (orange
solid line, in secs) and reconstructed PSNR (blue dashed line) as a function
of maximum allowed cell size L.

f̂α[m] =

{
(1− α)f0→α[m] + αf1→α[m] I0α[m] = I1α[m]

fk→α[m] otherwise
,

(6)
where k refers to the reference frame where the location m
is visible.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the performance of the proposed
BAM-TFI scheme. We start by assessing the impact of the
proposed mesh sparsification algorithm. Next, we compare the
TFI performance in terms of quality and computational com-
plexity of the proposed scheme with a variety of other state-
of-the-art TFI schemes. Lastly, we show qualitative results of
the temporal consistency of the proposed TFI method.

A. Mesh Sparsification: Impact of Maximum Triangle Size

The proposed mesh sparsification allows to trade off com-
putational complexity and memory requirements with image
reconstruction quality. For evaluation, we use the data set
used in [12], which contains a variety of common natural test
sequences with different types of motion. We selected 12 sets
of 21 frames each, and dropped all the odd indexed ones;
this results in a total of 120 frames where a ground truth
frame exists. For each even frame pair, we estimate motion
using MDP-flow [7]. We choose a frame upsampling factor of
8, which interpolates 7 frames in between the two reference
frames. For each frame pair, we compute the PSNR of the
center frame (α = 0.5), where a ground truth frame exists.

Fig. 5 shows the impact of maximum cell size L (between 1
and 64) on processing time (orange circles) and reconstruction
quality (blue crosses). One can observe that the maximum
allowed cell size L has very little impact on the reconstruction
quality; this is due to the fact that around moving objects,
where the motion is expected to be less smooth, the triangles
are small irrespective of the L. Perhaps more interesting is
the fact that in terms of processing times, the “sweet spot”
on the present test sequence is for a cell size of L = 32, and
then increases slightly for larger cell sizes. This is because

TABLE I
AVERAGE PER-FRAME PROCESSING TIME (IN SEC) ON ALL THE FRAMES

FROM THE TEST SET, SPLIT UP IN MOTION ESTIMATION (ME) AND FRAME
INTERPOLATION (FI), AS WELL AS THE AVERAGE PSNR OBTAINED ON

120 INTERPOLATED FRAMES.

Method CPU RAM PSNR ME FI Total

Jeong [4] 2.8GHz 8GB 35.1 410.2 498.9 909.1
Veselov [5] 2.6GHz 8GB 35.7 32.4 2.1 34.5
Lu [6] 2.4GHz 6GB 35.1 96.2 18.1 114.3
BOA-TFI [12]† 3.2GHz 8GB 37.1 355.4† 8.2 363.6
BAM-TFI†
BAM-TFI? 3.2GHz 8GB 37.3

36.5
355.4†
7.0?

0.5
0.5

355.9
7.5

† Motion fields estimated using MDP [7].
? Motion fields estimated using EPIC flow [8].

most of the cells are broken up to 32 × 32 anyways, but
the recursive splitting algorithm has more passes for larger
maximum cell sizes, which takes (unnecessary) time. It can
be expected that for larger resolutions, the sweet spot would
shift to larger maximum cell sizes.

B. Comparison with other TFI schemes

To highlight the high interpolation quality of the proposed
scheme, we provide results for other state-of-the-art TFI
schemes ([4], [5], [6]), as well as our earlier TFI work [12].
Table I shows the average computation time and average PSNR
obtained by the tested TFI schemes on the same test set as used
in the previous section.

We note that all the methods we compare ourselves to had as
a design objective to create high quality interpolated frames.
One can see that the proposed scheme outperforms current
state-of-the-art both in terms of quality and processing time.
We further ran our method using EPIC flow [8], which is
around 50 times faster than MDP-flow [7]; yet, the proposed
method still outperforms other state-of-the-art, while having
the lowest processing times.

C. Temporal Consistency

In this section, we assess the temporal consistency of
the proposed TFI framework, which is particularly important
around moving objects. We also show the effectiveness of the
proposed disocclusion region backprojection algorithm, whose
goal is to assign temporally consistent motion in regions of
disocclusion. In order to reduce the impact of the (quality
of) the motion field estimator, we use challenging sequences
from the Sintel sequence [13], where the ground truth motion
is known. Fig. 6 contains crops of various sequences from the
Sintel dataset, for a frame upsampling factor of 4.

Out of the methods we compare ourselves to, only BOA-TFI
[12] can readily accommodate frame upsampling factors larger
than 2; this framework is already tailored to create consistent
results, and is probably above average performance around
moving objects. Nonetheless, the BAM-TFI framework we
propose in this paper creates more consistent results around
moving objects, especially around thin moving objects.

(a) Input f16 and f17, and 1
2
(f16 + f17) (b) f̂16.25, f̂16.5, and f̂16.75 using BAM-TFI (c) f̂16.25, f̂16.5, and f̂16.75 using BOA-TFI

(d) Input f6 and f7, and 1
2
(f6 + f7) (e) f̂6.25, f̂6.5, and f̂6.75 using BAM-TFI (f) f̂6.25, f̂6.5, and f̂6.75 using BOA-TFI

(g) Input f25 and f26, and 1
2
(f25 + f26) (h) f̂25.25, f̂25.5, and f̂25.75 using BAM-TFI (i) f̂25.25, f̂25.5, and f̂25.75 using BOA-TFI

Fig. 6. Crops of various sequences from the Sintel dataset [13] (from top to bottom market 2, ambush 6, and bamboo 2). Each row first shows the two
input frames, as well as the average of the two input frames, to give an idea of the motion. The next three frames are the interpolated frames produced by
the proposed BAM-TFI method, followed by the results obtained using BOA-TFI [12].

VIII. CONCLUSIONS AND FUTURE WORK

This paper introduces the concept of base-anchored motion
using a sparsified mesh for temporal frame interpolation,
which we refer to as BAM-TFI. We propose a triangular
mesh sparsification algorithm, which is able to significantly
reduce the computational complexity of the proposed TFI
method with almost no degradation in reconstruction quality.
The second contribution is a method of creating a back-
ground motion layer in disoccluded regions, which guarantees
temporally consistent motion assignments in regions that get
uncovered between the two reference frames. Compared to
current state-of-the-art TFI methods, the proposed method has
higher quality and lower processing times, and is able to create
temporally consistent interpolated frames.

In future work, we plan to include higher motion model
orders to account for motion that is not constant, which
opens interesting links to highly scalable video compression.
We further intend to implement the proposed indexed mesh
structure into the GPU, which promises further reduction in
processing time.

REFERENCES

[1] C. N. Cordes and G. Haan, “Key requirements for high quality picture-
rate conversion,” SID Symposium Digest of Technical Papers, vol. 40,
no. 1, pp. 850–853, 2009.

[2] S. Dikbas and Y. Altunbasak, “Novel true-motion estimation algorithm
and its application to motion-compensated temporal frame interpola-
tion,” IEEE Trans. Image Proc., vol. 22, no. 8, pp. 2931–2945, 2013.

[3] M. T. Orchard and G. J. Sullivan, “Overlapped block motion compen-
sation: An estimation-theoretic approach,” IEEE Trans. Image Proc.,
vol. 3, no. 5, pp. 693–699, 1994.

[4] S.-G. Jeong, C. Lee, and C.-S. Kim, “Motion-compensated frame
interpolation based on multihypothesis motion estimation and texture
optimization,” IEEE Trans. Image Proc., pp. 4497–4509, 2013.

[5] A. Veselov and M. Gilmutdinov, “Iterative Hierarchical True Motion
Estimation for Temporal Frame Interpolation,” IEEE Int. Workshop on
Multimedia Sig. Proc., 2014.

[6] Q. Lu, N. Xu, and X. Fang, “Motion-Compensated Frame Interpola-
tion With Multiframe Based Occlusion Handling,” Journal of Display
Technology, vol. 11, no. 4, 2015.

[7] L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical flow
estimation,” IEEE Trans. Patt. Anal. and Mach. Intell., pp. 1744–1757,
2012.

[8] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, “Epicflow:
Edge-preserving interpolation of correspondences for optical flow,” Proc.
IEEE Conf. Comp. Vis. and Patt. Rec., 2015.

[9] E. Herbst, S. Seitz, and S. Baker, “Occlusion reasoning for temporal
interpolation using optical flow,” Dept. of Comp. Science and Eng.,
University of Washington, Tech. Rep. UW-CSE-09-08-01, 2009.

[10] L. L. Rakêt, L. Roholm, A. Bruhn, and J. Weickert, “Motion com-
pensated frame interpolation with a symmetric optical flow constraint,”
Advances in Visual Computing, pp. 447–457, 2012.

[11] D. Rüfenacht, R. Mathew, and D. Taubman, “A Novel Motion Field
Anchoring Paradigm for Highly Scalable Wavelet-based Video Coding,”
IEEE Trans. Image Proc., 2015.

[12] ——, “Occlusion-Aware Temporal Frame Interpolation in a Highly
Scalable Video Coding Setting,” APSIPA Trans. Signal and Information
Proc., 2016.

[13] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open
source movie for optical flow evaluation,” European Conf. on Comp.

Vis., pp. 611–625, Oct. 2012.

