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Nonlinear Transform for Robust Dense Block-Based
Motion Estimation
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Abstract—We present a non-iterative multi-resolution motion
estimation strategy, involving block-based comparisons in each
detail band of a Laplacian pyramid. A novel matching score
is developed and analysed in a spatially continuous setting.
The proposed matching score is based on a class of non-linear
transformations of Laplacian detail bands, yielding 1-bit or 2-
bit representations that also have computational advantages. The
matching score is evaluated in a dense full-search motion esti-
mation setting, with synthetic content and optical flow datasets.
Together with a strategy for combining the matching scores
across resolutions, the proposed method is shown to produce
smoother and more robust estimates than MSE in each detail
band and combined. It tolerates more of non-translational motion
such as rotation, validating the analysis, while providing much
better localisation of the motion discontinuities. We also provide
an efficient implementation of the motion estimation strategy
and show that the computational complexity of the approach
is comparable to the usual MSE block-based full-search motion
estimation.

Index Terms—non-linear transform, 1-bit and 2-bit represen-
tation, multi-resolution, block-based, motion estimation, dense
field, full search.

I. INTRODUCTION

Motion estimation, which is the process of finding pixel
correspondences between a pair of video frames, is an impor-
tant step in many visual signal processing applications. These
include video communication applications, such as video com-
pression and frame enhancement, as well as computer vision
applications, such as segmentation, tracking and disparity
estimation. A variety of approaches have been attempted to
solve the problem. On one extreme we have block-based
approaches, which aim to independently estimate the motion
on image blocks; on the other extreme we have the optical
flow approach, which involves a coupled optimisation problem
to jointly optimise a local matching objective and a flow
regularisation constraint. The aim of this paper is to propose
and analyse a novel matching score other than mean square
error (MSE), and evaluate its robustness in a dense full-search
block-based true motion estimation setting. The objective is to
minimise the motion error with respect to ground truth motion
fields.

We confine our attention to translational dense block-based
motion estimation. One motion vector is found for each pixel
location by considering a block centred at each location; hence
we refer to blocks over which the matching score is calculated
as windows. This dense motion estimation is a good evaluation
for block-based matching metrics such as the one proposed in
this paper. However, within any given window, the motion in
a real video frame is not generally translational. This non-
translational motion particularly affects the contribution of

high frequency content to the matching metric. It turns out
that when MSE is used, these high frequency contributions
can become useless or even misleading. Matching scores
other than MSE have been proposed before such as MAD
and Hadamard-MAD [1] but none of these address this issue
explicitly.

In particular, we propose a multi-resolution matching score,
which involves the decomposition of the original source
frames into separate resolution detail subbands. A separate
matching score for each resolution subband is designed to
improve the robustness of motion estimation to the possible
presence of non-translational motion within the windows. This
is followed by the combination of matching scores generated
from each resolution.

Within each resolution level, the matching score we propose
involves a class of non-linear transformations of the content,
producing intermediate thresholded and morphologically di-
lated versions of the detail band, which can be represented with
one or two bits per sample. Some algorithms proposed in the
literature also involve thresholded representations of frames.
However, they usually focus on trading reduced matching
quality for reduced matching complexity. Some are evaluated
using the compensation error from the estimated motion field,
e.g., [2], [3], or using the rate-distortion performance under a
video compression scheme, e.g., [4]–[6]. Other such proposed
matching scores are part of a larger application, e.g., [7]–[9].
[7] describes a 2-bit transform for increasing the robustness of
motion estimation (registration) in a multi-frame enhancement
application, from which we draw some of our inspiration. [9]
proposes a local matching score in a probabilistic formulation
to tell foreground from background in video frames. Most im-
portantly, all of these methods except [9], calculate matching
scores in the image domain. None of these methods involve the
morphological dilation proposed in this work. None of these
prior works provide an analysis to explain how these non-
linear transforms can provide more robust motion estimation,
nor do they use such an anlaysis to motivate the selection of
parameters.

The use of multiresolution framework for motion estimation
is certainly not new. However, for block-based methods they
usually focus on the search strategy, using lower resolution
to initialise the motion search of the next higher resolution –
e.g., [10]–[12]. In fact, many optical flow methods involve this
hierarchical approach as well – e.g., [15]–[17]. None of these
prior works calculate a multi-resolution matching metric.

This work can be understood as an extension of the motion
estimation strategy initially proposed in our earlier conference
paper [18]. We build considerably on that work in following
ways. We provide a much more comprehensive analysis of
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the properties of the non-linear transforms, which guides the
selection of parameters in a manner that is sensitive to the
expected potential for non-translational motion. We provide a
much more comprehensive experimental evaluation, validating
the analysis, while also explicitly showing that the proposed
matching score resolves motion boundaries more effectively in
the motion estimates despite the use of relatively large window
size. We provide an efficient implementation of our approach
and analyse its complexity, showing that the computational
cost is closely related to that of traditional block-based motion
estimation. Finally, we consider and evaluate other 1-bit and 2-
bit transforms that can be understood within the same spatially
continuous analysis.

We begin the paper in Section II by analysing the funda-
mental problem associated with MSE as a matching score,
which serves as the motivation for the rest of the paper.
Sections III, IV, V and VI describe the steps involved
in the proposed approach, and provide analyses for each of
these steps. Section VII is concerned with parameter selection
based on the analyses. Section VIII gives a method for
combining matching scores from all resolutions. Section IX
further explains the search procedure and describes an efficient
implementation with its computational complexity. Section X
presents experimental results, firstly on a variety of synthetic
sequences to test particular aspects of the proposed approach,
and then on a standard optical flow dataset.

II. THE EFFECT OF NON-TRANSLATIONAL MOTION ON
MSE

Fig. 1: Highest frequency detail bands f (1) and g(1), from two
frames f and g, that are related by rotation and translation.

Consider two frames f and g. It is instructive to recognize
that total squared error in the image domain is equivalent to
the sum of the total squared errors found within each detail
frequency subband. To see this, suppose we decompose f
into a collection of narrow frequency bands {f (1), f (2), . . .}
using ideal bandpass filters, such that f̂(ω) = f̂ (1)(ω) +
f̂ (2)(ω) + · · · + f̂ (k)(ω) + · · · and the regions of support
Ωk =

{
ω
∣∣∣f̂ (k)(ω) 6= 0

}
are disjoint. If we do the same for

g then the total squared error associated with candidate motion
vector v can be expressed as

ρ(v) =
∑
k

1

(2π)2

∫∫
Ωk

|ĝ(k)(ω)− f̂ (k)(ω)e−jω
tv|2dω.

If f and g are related by a translational displacement σ0, so
that g[n] = fσ0

[n] (i.e., ĝ(ω) = f̂(ω)e−jω
tσ0 ), then ρ(v)

takes its minimum value of 0 when v = σ0. If v differs from
σ0 by some small motion estimation error δ, we have

ρ(v) =
∑
k

1

(2π)2

∫∫
Ωk

|ĝ(k)(ω)|2 · |1− e−jω
tδ|2︸ ︷︷ ︸

≈|ωtδ|2

dω

︸ ︷︷ ︸
ρ(k)(v)

.

Evidently, the effect of small motion estimation errors is
greatest at the highest spatial frequencies. In practice, we
do not expect two frames to be related by pure translational
motion, even over a limited window. This means that no
matter what motion vector v is selected, there are always
displacement errors and these errors most strongly affect the
higher spatial frequency components, represented by bands
f (k) for which k is small. Accordingly, the contributions
ρ(k)(v) from these bands to the overall squared error ρ(v)
are useless at best and misleading at worst.

This phenomenon can readily be visualised in the spatial
domain, by considering the highest frequency bands f (1) and
g(1) of two frames f and g that are related by a combination
of translation and rotation. Within a sufficiently small spa-
tial neighbourhood, rotation can always be approximated by
translation; however, the window size employed for motion
estimation must be large enough to ensure that the motion
is likely to be observable. Figure 1 illustrates the matching
problem in this high frequency band. Clearly, no matter what
motion vector v is selected, motion estimation errors affect
most of the window and the matching score is very poor. In
the example, many vectors v, including the true motion, result
in most of the large values of g(1) overlapping values that are
close to 0 within f (1)

v , so that the total squared error is both
large and highly insensitive to v. As a result, we expect the
ρ(1)(v) component of ρ(v) to be unhelpful or even misleading.

The above observation represents the primary inspiration
for the work described in this paper. Since the high frequency
components play an important role in localising image features
such as edges, our goal is to devise matching criteria that
enhance their utility, despite the presence of non-translational
motion. It is tempting to apply a low-pass filter to these
subbands in the hope of “spreading” the image features prior
to matching. However, when the bands are sufficiently narrow,
applying any LSI filter to f (k) and g(k) prior to evaluating
the squared error has no effect other than to scale ρ(k) by
a constant; this does affect the relative contribution of each
component ρ(k)(v) to the overall matching score, but has no
impact on the robustness of the individual scores ρ(k)(v).
This suggests that a nonlinear transformation is required to
fully exploit the information available within the individual
subbands. In Sections III, IV, V and VI, we propose such
a way to improve the reliability of the matching scores
associated with higher frequency bands.

III. MULTIRESOLUTION APPROACH

A. Proposed Laplacian Pyramid

In view of the roles played by different spatial frequency
components, as discussed in Section II, we choose to de-
compose each frame into frequency bands {fk} and {gk},
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evaluating a matching score for each candidate motion vector
v separately within each subband, after which the scores can
be combined. The specific transform employed in this work is
shown in Figure 2, where Gσ is a Gaussian filter with σ =

√
3

and f [n] is first interpolated by 2 to get f×2. The choice
σ =
√

3 ensures that each detail band is essentially free from
aliasing artefacts, as we shall see shortly.

Fig. 2: Laplacian Pyramid for Analysis

B. Modelling Subbands of a Continuous Ideal Edge

To investigate matching MSE and the proposed non-linear
matching in subbands, we will find it useful to model an ideal
edge u(x) in the continuous domain in one dimension using
the Heaviside step function u(x) = H(x) =

∫ x
−∞ δ(τ)dτ ,

where δ(x) is the Dirac delta function. This ideal edge is sub-
jected to a low pass Gaussian GσI (x) = 1

σI
√

2π
exp(− x2

2σ2
I
) to

simulate the effect of a bandlimited imaging system, yielding
the imaged edge

uI(x) = (u ∗GσI )(x) =
1

2
[erf(

x√
2σI

) + 1],

where erf(x) = 2√
π

∫ x
0

exp(−τ2)dτ is the error function that
has erf(∞) = 1 and erf(−∞) = −1.

Let uk(x) be the Laplacian subband produced by such
an edge uI(x) at levels k = 0, 1, 2, 3... with unit sampling
rate such that uk[n] = uk(x) |x=n. Following the proposed
Laplacian pyramid in Figure 2, having f×2 = uI , uk can
be calculated in the continuous domain using the following
equations.

u0 =u ∗GσI − u ∗GσI ∗Gσ,
u1 =S2(u ∗GσI ∗Gσ)− [S2(u ∗GσI ∗Gσ)] ∗Gσ

=u ∗GσI
2
∗Gσ

2
− u ∗GσI

2
∗Gσ

2
∗Gσ,

...

uk =u ∗Gσ(k−1)
2

− u ∗Gσk ,

where S2 is the sub-sampling operator in the continuous
domain such that (S2 ◦ f)(x) = f(2x), and σ2

k = σ2
I2−2k +

σ22−2k+...+σ22−2×1+σ22−2×0, for k ≥ 0. The above series
quickly converges to σ2

k = 4
3σ

2, and hence uk(x) quickly
converges to U(x), which we define as the universal subband
edge function,

U(x) =
1

2
[erf(

x√
2σ/
√

3
)− erf(

x

2
√

2σ/
√

3
)]. (1)

In fact, for the specific choice of σ =
√

3, when σI = 1,
uk(x) = U(x) for all k ≥ 0. The choice of σ =

√
3 and

the reasonable assumption of σI = 1 results in the effective
standard deviation σk = 2 for all k ≥ 0, which guarantees that
the signal before sub-sampling is bandlimited to ω ∈ [−π2 ,

π
2 ],

so that the continuous analysis here is not invalidated by
aliasing from the discrete implementation.

In two dimensions, the subband edge function derived above
describes the horizontal component of a vertical edge, as it
appears in each resolution level. Using rotationally invariant
Gaussian filters, the same model applies to edges of any orien-
tation, describing their behaviour as a function of displacement
from the edge.

C. Summary of the Approach

At this point, we provide a summary of the overall im-
plementation. In the ensuing sections, we consider the in-
dividual steps, providing an accompanying analysis of each
step. These steps involve thresholding, dilation, matching,
combining matching scores across resolutions. Figure 3 gives
this summary as a flow chart.

Fig. 3: This flow chart shows the multi-resolution approach pri-
marily on a single resolution level k. gk[n] and fk[n] are discrete
representations of subbands from Figure 2. The other symbols are
defined properly in their respective sections. The labelled opera-
tions 1, 2 and etc in the figure are: 1.Thresholding (Section IV)
2.Dilation (Section V) 3.Whole frame shift (refer to Section IX on
computational complexity) 4.Pixelwise XOR operation (Section VI)
5.Moving average counter (Section VI) 6.Weighted combination
across all resolutions (Section VIII) 7.The motion estimate Ṽg→f [n]
is obtained by choosing the candidate motion vector v that optimizes
the matching score at each pixel location n (Section IX)

IV. THRESHOLDING

In this section we introduce a set of non-linear transforma-
tions of the subband data, which allow edge features in the
high frequency subbands to be effectively expanded, avoiding
the problem introduced in Section II.

The simplest non-linear transformation of interest maps
the Laplacian subbands gk[n] to binary-valued representations
gB,k[n], according to

gB,k[n] =

{
1 |gk[n]| > (|gk| ∗ hL)[n],
0 otherwise, (2)

where the absolute value of gk is first subject to a low-
pass spreading filter hL, which is then used to threshold the
absolute value of gk.

This thresholding operation can be understood as a contrast
normalization step, where gk[n] values are divided by the
average absolute values of their neighbours, after which the
absolute value of the result is subjected to a threshold of
1. Contrast normalization without thresholding is much more
problematic, being an ill-conditioned operation, requiring the
use of explicit division operators. Additionally, the binary
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representation is more amenable to efficient matching and
morphological processing operations.

One improvement on this theme is to keep the signs by
using ternary-valued representations so that the two sides of
an edge can be distinguished,

gT,k[n] =

 1 gk[n] > +(|gk| ∗ hL)[n],
−1 gk[n] < −(|gk| ∗ hL)[n],
0 otherwise.

(3)

We refer to this as the 2-bit-abs method. Yet a further improve-
ment is to obtain gT,k by developing positive and negative
thresholds separately,

gT,k[n] =

 1 gk[n] > (gk+ ∗ hL)[n],
−1 gk[n] < (gk− ∗ hL)[n],
0 otherwise,

(4)

where gk+ = max (0, gk) and gk− = min (0, gk) are the +ve
and -ve parts of gk. This variation turns out to be better adapted
to the representation of edges for which the neighbouring
positive and negative lobes in the Laplacian detail band are
not of equal magnitude – this may happen when two ideal
edges lie close together. We refer to this as the 2-bit method.

In addition, we can add an extra noise threshold δ in the
above Equations (2), (3) and (4), such that the subband values
have to be also larger than δ or smaller than −δ for the trans-
formed values to be non-zero. This seems like a reasonable
thing to do to avoid excessive contribution from noise. In
fact, in a related work [3], this is quite useful. However, it
turns out that our proposed approach for combining matching
scores renders such noise threshold useless, as we show in our
experiments.

In the next section, we analyze the effect of these threshold-
ing operations in order to understand the impact of the selected
spreading filter hL on the geometry of the ternary and binary
subband images; this analysis drives the selection of hL in the
rest of the paper.

A. Continuous Domain Analysis of Thresholding

Figure 4a illustrates the impact of thresholding on our
universal subband edge function U(x) defined in Equation (1).
The key features of interest are the widths and separation of
the non-zero regions (or “peaks”) in the thresholded output,
that arise on either side of the underlying edge feature; we
denote these features Wp and Wd. For our analysis, we take
the low pass filter hL to be AGσL , where GσL is a normalized
Gaussian filter and A is the DC gain.

We begin by considering the 1-bit and 2-bit-abs methods,
for both of which the thresholding function is obtained by
convolving hL with |U(x)|. We then extend the approach
to include the full 2-bit method, for which separate positive
and negative threshold functions are obtained by convolving
hL with U+(x) and U−(x). Although U(x) is Nyquist ban-
dlimited, its absolute value and its positive and negative parts
are not. For this reason, the continuous domain analysis with
which we begin may be inaccurate. We assess the level of
accuracy later, by considering the impact of aliasing.

(a) σL = 5 (b) σL = 5

(c) σL = 0.5 (d) σL = 30

Fig. 4: This figure shows the 2-bit transform for σL = 5 and
some extreme σL values for U(x) with gain A = 1 and noise
threshold δ = 0. (b) zooms in on (a) to show Wp and Wd

1) Continuous domain modelling of the 1-bit and 2-bit-
abs methods: In both the 1-bit and 2-bit-abs methods, in
Equations (2) and (3), gB,k[n] and gT,k[n] are non-zero if and
only if |gk[n]| − (hL ∗ |gk|)[n] > 0. Adopting our uniform
subband edge function, and restricting the analysis to one
dimension, |gk[n]| = |U(x)|x=n. If we temporarily ignore the
fact that |U(x)| cannot be Nyquist bandlimited, the discrete
convolution of the sampled Gaussian hL[n] with gk[n] can
be seen as equivalent to sampling the result produced by the
continuous convolution of hL(x) = AGσL(x) with |U(x)| –
this is because GσL(x) itself is effectively Nyquist bandlimited
for any σL & 1. This allows us to find the Wp and Wd

parameters by considering the width and separation of positive
values of the continuous function (|U | −A · (GσL ∗ |U |))(x).
Depending on the precise location of the edge, with respect to
the sampling grid, the discrete thresholded output may exhibit
widths of either bWpc or dWpe and separations of either bWdc
or dWde.

We evaluate the function
p(x) = (|U | −A · (GσL ∗ |U |))(x)

= |U(x)| − A√
2πσ2

L

∫
e−τ

2/(2σ2
L)|U(x− τ)|dτ

via numerical integration and report the width and separation
of the regions for which p(x) > 0, in Figure 5, for various
combinations of the parameters A and σL. Figure 4 plots
the threshold function (in blue) and the 2-bit-abs thresholded
output UT (x) (in green), where UT (x) equals sign(U(x))
if p(x) > 0 and 0 otherwise. The 1-bit method produces
UB(x) = |UT (x)|.

2) Continuous domain modelling of the 2-bit method: In
the 2-bit method defined in Equation (4), gT,k[n] = 1 if
and only if |gk+|[n] − (hL ∗ |gk+|)[n] > 0. Adopting our
universal subband edge function, restricting the analysis to
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Fig. 5: Wp and Wd as a function of σL. The solid line is using |U |
and the dashed line is using U±

.

one dimension, and temporarily ignoring the fact that U+(x)
cannot truly be Nyquist bandlimited, we proceed as before,
deducing the width of the positive region as that for which
p+(x) > 0, where

p+(x) = (|U+| −A · (GσL ∗ |U+|))(x)

= |U+(x)| − A√
2πσ2

L

∫
e−τ

2/(2σ2
L)|U±(x− τ)|dτ

The width of the negative region, corresponding to |gk−|[n]−
(hL ∗ |gk−|)[n] > 0, is exactly the same in this continuous
domain analysis, due to the symmetry of U(x). The separation
between the positive and negative regions is also readily found,
as twice the min (x > 0 | p+(x) = 1). The Wp and Wd values
produced in this way are shown as dashed lines in Figure 5.

Evidently, for a given value of σL, the 2-bit method requires
A to be about twice as large as the 1-bit and 2-bit-abs methods,
in order for Wp and Wd to be comparable (see the dashed
green and solid blue curves in Figure 5). This observation
holds for modest to large values of σL, which makes sense
considering that the mean value of U+(x) and of U−(x) are
each only half that of |U(x)|. As a result, the behaviour of
all three thresholding methods is essentially the same, subject
to appropriate choice of A, except where σL is very small.
The only significant differences between the methods are that
the 2-bit and 2-bit-abs methods preserve the sign information

that distinguishes light-dark from dark-light transitions, while
the 2-bit method is expected to handle multiple nearby edges
more reliably than the 2-bit-abs method.

3) Impact of aliasing on the analysis: We now turn briefly
to study the aliasing of the non-linear operations on U(x)
to show that the above continuous domain analysis is not
invalidated by the discrete implementation. The discrete im-
plementation yields (hL ∗ |gk|)[n], which is equivalent to
sampling the continuous function (hL ∗ |gk|)(x), so long
as the aliasing contributions from |̂gk|(ω) at |ω| > π are
negligible. Since hL is a narrow-band filter, selecting only
frequencies close to DC, it is sufficient to consider only the
aliasing contributions that map to DC; these correspond to
|̂gk|(2mπ) for non-zero integers m. More particularly, the
relative impact of aliasing on the continuous domain analysis
for the universal subband edge function U(x) is governed by
the ratio

∣∣∣ |̂U |(2mπ)

|̂U |(0)

∣∣∣. Evaluating this ratio, we find that∣∣∣ |̂U |(2π)

|̂U |(0)

∣∣∣ = 0.0133,
∣∣∣ |̂U |(4π)

|̂U |(0)

∣∣∣ = 0.0032.

Similarly, we can find Û±(ω). Although, the shape of Û±(ω)

is different from |̂U |(ω), the ratios
∣∣∣ Û±(2mπ)

Û±(0)

∣∣∣ turn out to
have exactly the same values. We conclude that our contin-
uous domain analysis provides a reliable indication of the
ternary/binary image feature widths and separations produced
by the actual discrete implementation.

V. MORPHOLOGICAL DILATION

To increase tolerance to small motion errors during the
matching process, gT,k is further processed by morphological
dilation. Specifically, we form g⊕,k by two successive appli-
cations of the operator ⊕1̄1, where

(⊕1̄1x) [n] =
∨

k∈Bε,3x[n−k] 6=11

x[n− k]. (5)

Here, Bε is the circular structuring set with radius ε, and
∨

denotes the binary inclusive OR operation, applied to each
bit-plane of the 2-bit ternary-valued subband,

x[n] =

 01 gT,k = 1,
10 gT,k = −1,
00 otherwise.

Although the initial ternary-valued subband cannot take the
value 11, after dilation such values do generally occur; how-
ever, the operator ⊕1̄1 dilates only those locations that are
either strictly +ve (01) or strictly -ve (10), not both.

A. Dilation in the Continuous Domain

Figure 6 illustrates the dilation process in the continuous
domain. The overall dilation is a two-step process, where
the first step increases the separation between the 01 and 10
regions, i.e. W 1

d > Wd, and the second step makes the two
bands wider. Specifically, after the first dilation,

W 1
d = 2ε−Wd,

W 1
p = Wp +Wd,
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Fig. 6: Illustration of Dilation in the Continuous Domain

and after the second dilation,

W 2
d = Wd,

W 2
p = Wp + 2ε.

In real applications, the width of band W 2
p , which is used for

matching, also depends on the density of edges. The presence
of a second nearby edge can limit the dilation of a first
edge. The fact that ⊕1̄1 does not dilate locations in which
the positive and negative bit-planes overlap is particularly
advantageous in such situations, since it prevents dense edges
features from merging into each other.

Where the 1-bit method is used to form binary valued
subbands, instead of the ternary valued subbands considered
above, we simply dilate once by the circular structuring
element Bε. This produces a single non-zero band of width
W 2
p = (2Wp+Wd)+2ε around an edge, so long as 2ε ≥Wd.

VI. MATCHING ON 2-BIT TRANSFORMS

A matching score can now be calculated between g⊕,k[n]
and f⊕,kv [n]. We do this by adding the MSE’s between corre-
sponding bit-planes of g⊕,k and f⊕,kv , evaluated over a window
Wn of size (2R + 1)2 centered at location n, where R is
the half-width of the square matching window. This matching
score can be evaluated readily by taking the exclusive OR
between the corresponding bit-planes and counting the number
of 1s in the result. Specifically, we have

ρ⊕,k(v)[n] =
∑
p∈Wn

[
(g⊕,k[p])bit0XOR(f⊕,kv [p])bit0

]
+
[
(g⊕,k[p])bit1XOR(f⊕,kv [p])bit1

]
.

(6)

Naturally, where the 1-bit method has been used, the dilated
images are represented by only one bit-plane and the exclusive
OR operation is applied only on this bit-plane.

A. Matching Two Peak Bands in the Continuous Domain

Figure 7 helps to understand the impact of motion estima-
tion errors δ on the matching score, considering only one of
the bit-planes of the proposed 2-bit transform 1. The figure is

1For isolated edges, the contribution of each bit-plane to the matching score
in equation (6) is exactly the same from the continuous domain perspective.

(a) W = 1 (b) W = 9

Fig. 7: Interpretation of the matching score, where R = 15 is the
half-width of the square matching window.

equally helpful in understanding the impact of motion errors
on the single bit-plane produced by the 1-bit method. In each
case, the edge feature produces a band of non-zero values of
width W ,W 2

p , as explained above, and we consider motion
errors δ in the normal direction to the edge. Importantly,
the matching score is affected by relative warping of the
edge between the two frames, in addition to translation. For
simplicity, we model this warping as a local rotation through
angle θ; as a result, the matching score is not 0, even when
the translational error δ at the centre of the window is 0. This
renders the matching score more susceptible to the impact of
noise. To see this, we begin by noting that the matching score
by the mismatched edge features is simply the area of the
shaded region in Figure 7. We can model this matching score
carefully in the continuous domain, as a function of the motion
error |δ|; the result is shown in Figure 8. Note that this result is
independent of the resolution level, assuming that matching is
performed on a window of size (2R+1)×(2R+1), measured
relative to the sample spacing in that resolution level.

In general, for small θ and assuming that W > Rθ, the
minimum value of the matching score always corresponds
to the correct matching location at |δ| = 0, no matter how
large the search range is. In fact, under these conditions, the
difference in the matching scores produced by large motion
errors |δ| and the ideal case where δ = 0 is given by
2R(W − Rθ). What this means is that the larger the width
W of the edge feature, the less likely it is that large motion
estimation errors result from the combination of noise and
geometric warping (rotation here). Figure 8 reveals that there
is a “capture region” around the ideal location at δ = 0,
where the matching score is highly sensitive to the motion
vector v; beyond this point, the matching score becomes
insensitive to δ, except where |δ| is so large that the edge
feature is found within the window in only one of the two
frames. The size of the capture region can also be taken as
a limit on the coarsest step size that may be used during
a reliable motion search. Evidently, the capture region is
smallest in the absence of rotation, where its extent is given
by W . Together, these two observations explain the role of
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(a) W = 1

(b) W = 3

(c) W = 9

Fig. 8: Matching score ρ a function of motion error |δ|, where R =
15 is the half-width of the square matching window.

the dilation step, which increases W and hence improves the
reliability of the motion search subject to relative geometric
warping and/or limited precision in the search step. Recall that
the MSE matching criterion on original subband images is
highly sensitive to motion errors induced by non-translational
motion and/or limited search precision.

VII. PARAMETER SELECTION

The above analysis provides some insight into the selection
of parameters for our proposed non-linear transform and
matching process. Specifically, the parameters of interest are
the dilation radius ε, the spreading filter gain and extent
parameters A and σL, and the matching window size R. The
first three parameters determine the widths W of the edge fea-
tures produced in the binary or ternary valued subbands, after
dilation. The relationship between W and R then determines
the robustness of the matching process.

To obtain one possible choice of parameters to use in our
experiments, we pick the value for R first. R has to be
large enough to include sufficient features for motion to be
observable within the matching window. For this reason, we
pick R = 14, which is a 29×29 window for all subbands. For
the highest resolution subband, this is equivalent to a 15× 15
window in the original frame resolution. Given the amount of
warping that we want to tolerate in terms of rotation θ, we
can then pick W , such that W ≥ 2Rθ. Arbitrarily selecting
a geometric tolerance of |θ| ≤ 18◦, we obtain W = 9. We
choose to implement hL through a cascade of two 13 × 13
moving average window filters, with unit DC gain; this crudely
approximates a Gaussian filter with σL ≈ 5 and A = 1.
From Figure 5, this choice yields Wp ≈ 3, so that the discrete
implementation produces edge features whose widths lie in the
range 2 to 4 prior to dilation. The final target width of W 2

p ≈ 9
is achieved by selecting ε = 3 for the dilation parameter.

To summarise, we pick the following parameters in the
evaluation and application Sections X and X-C, unless stated
otherwise: hL is implemented by applying a 13× 13 moving
average filter twice, ε = 3 and R = 14.

VIII. COMBINING MULTIRESOLUTION MATCHING SCORES

We turn now to the problem of combining the matching
scores generated at each level of the Laplacian pyramid. For a
given candidate displacement v, we generate matching scores
ρ⊕,k(v)[n] at each location n of each level k, using (6) – note
that this is nothing other than a moving average, which can
be implemented recursively with extremely low complexity,
independent of the window size (2R + 1)2. We then pro-
gressively interpolate and combine the matching scores from
coarser levels into finer levels according to

ρ⊕,→k(v)[n] = ρ⊕,k(v)[n] + (1− cM,k[n]) · ρ̄⊕,→k+1(v)[n]
(7)

where ρ̄⊕,→k+1(v) is the interpolated version of ρ⊕,→k+1(v)
and cM,k[n] is an estimate of the reliability of the level k
estimates. In this paper, we base this reliability estimate on a
recently introduced measure of the local image structure (as
opposed to unstructured noise).

Specifically, cM,k is the structural content estimator de-
scribed in [20], which also operates on the ternary valued im-
age gT,k. Basically, cM,k is obtained by applying a Short-Time
Fourier transform to gT,k and then measuring the uniformity
of the resulting Fourier coefficient magnitudes: highly skewed
magnitude distributions correspond to structured regions, re-
turning values of cM,k that are close to 1, while more uniform
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magnitude distributions correspond to unstructured regions,
returning values close to 0.

The final matching score for candidate displacement v
and location n is taken at the finest resolution level as
ρ⊕,→0(v)[n].

IX. SEARCH PROCEDURE AND COMPUTATIONAL
COMPLEXITY

In this section, we further explain the search procedure
that is capable of generating a dense motion vector field with
the same resolution as the frame used for motion estimation.
This procedure is actually equivalent to the usual block-
based motion estimation, except that it generates a dense
motion field. We also discuss an efficient approximation of the
direct implementation, exploiting the fact that the proposed
2-bit matching score tends to be a smooth, slowly varying
function of spatial position and displacement. Furthermore, the
computational complexity of the direct search procedure and
the efficient approximation are shown and compared to that of
block-based motion estimation with MSE as the criterion.

Conceptually at least, to find the dense motion field, we
first displace frame f to obtain fv , for each candidate motion
vector v within the search range. In the case where we use
MSE in the original image domain as the matching score,
ρ(v)[n] can be calculated as a moving average of the square
of the difference between g(n) and fv(n) with window size
(2R+ 1)× (2R+ 1). We compare ρ(v)[n] for each candidate
motion vector v, at each pixel location n, to find a v that
minimizes the matching score. This gives us the estimated
motion vector field Ṽ[n]. The complexity of this dense motion
estimation procedure is similar to that of traditional block-
based motion estimation, with disjoint blocks and only one
motion vector per block. In both cases, one multiplication
and one subtraction are performed per pixel per displacement
candidate; the coarse disjoint block approach requires an
extra addition per pixel per displacement during the block
accumulation phase, whereas the dense estimation procedure
requires four additions per pixel per displacement for the
moving average operation. It is also worth noting that the
dense estimation procedure requires one comparison per pixel
per displacement candidate, to discover Ṽ[n]. In summary,
since comparison operations are comparable to adds, we can
say that the dense MSE-based matching procedure has an
overall complexity of (1 ×, 6 add) per pixel per displacement
candidate.

For the proposed matching score ρ⊕,→0(v)[n], we again
employ the moving average approach to find the estimated mo-
tion field Ṽ[n]. For each candidate v, fkv has to be calculated
from the Laplacian transform of fv , and f⊕,kv calculated from
fkv . Moreover, the matching score calculated at each resolution
level ρ⊕,→k(v)[n] has to be interpolated and combined with
the scores calculated at the next higher level. These operations
add a certain amount of computational complexity compared
to matching MSE in the image domain; however, the 2-bit
matching procedure is simpler than MSE matching within any
given resolution level. As it turns out, the complexity of this
direct implementation is dominated by the calculation of f⊕,kv

for each candidate v and the interpolation of low resolution
scores during the inter-resolution combination process. The
former can be greatly reduced by observing that f⊕,kv1 and f⊕,kv2
are related by an integer shift whenever v1 − v2 is a multiple
of 2k−1, so that the largest source of complexity eventually
becomes that of interpolation.

For further efficiency improvements, we take advantage of
the fact that ρ⊕,→k(v)[n] tends to be a smooth, slowly varying
function of both spatial position n and displacement v, as
suggested by Figure 8c. Specifically, we evaluate ρ⊕,→k(v)[n]
directly only for integer-valued locations n and displacements
v whose coordinates are multiples of 2k−1, after which the
remaining values are approximated using a quadlinear inter-
polation procedure. This means that we only need to calculate
f⊕,k directly, since shifts of f by multiples of 2k−1 correspond
to whole pixel shifts of f⊕,k. Our experiments show that, for a
variety of test data, this quadlinear interpolation approximation
has a negligible impact on the final estimated motion vector
field Ṽ[n].

When quadlinear interpolation is used, the cost of forming
f⊕,k can be largely ignored because it is independent of
the number of displacements considered. At each level k,
ρ⊕,k(vi)[n] must be evaluated for each location n and v =
2k−1i such that i is an integer vector. This requires two XOR
operations and an addition, plus four additions for computing
the moving average. To generate ρ⊕,→k(vi)[n] we also need
to interpolate the matching scores from level k+ 1 and blend
them with ρ⊕,k(vi)[n]. Blending requires two additions and
a multiplication, while the cost of quadlinear interpolation is
α multiplications and 2α additions per output value, where
α = 15

16 . To see this, note that 1D linear interpolation by a
factor of 2 requires two adds and one multiply to evaluate
every second output sample; quadlinear interpolation may
be performed one dimension at a time with each dimension
produces half as many samples as the next one so that the total
number of applications of the non-trivial interpolation operator
is α = 1

2 + 1
4 + 1

8 + 1
16 . Putting everything together, the cost

of forming ρ⊕,→k is (2 XOR, 1 + α ×, 7 + 2α add) for each
sample location and motion candidate in level k. The total
number of values which must be computed at level k is 16
times the number that must be computed at level k+ 1, from
which we conclude that the overall complexity of the proposed
method is 16

15 = 1
α times that for level 0 alone. Noting that

we also need a comparison operation (one add), the overall
complexity can be expressed as (2/α XOR, 1/α+1 ×, 7/α+3
add) per output sample per displacement candidate.

The proposed method naturally yields half-pixel precision
motion field, at a spatial resolution which is twice that of the
original image. Based on our earlier analysis, the generation
of a similar motion field using MSE as the matching score
requires (1 ×, 6 add) per output sample per displacement
candidate, which is less complex than the proposed method
by a factor of perhaps 3, noting that multiplications are by far
the most costly of the operations involved. Both methods can
be adapted to generating motion fields with different densities
and motion vector precisions, with similar implications for
complexity.
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X. EXPERIMENTAL RESULTS

In this section, we first use synthetic test sequences, gener-
ated by composing moving sprites over a moving background
image. The advantage of such content is that the true motion
field Vi→j [n] between frames fi and fj is known. Moreover,
the set of locations in fi that are occluded in fj , denoted
as Oi→j and the set of motion boundaries of fi, denoted
as Bi, are all known. Motion boundary is defined as a 4-
pixel wide region centred on the boundary of two different
sprites. We made these test sequences available on the web at
http://dstn.ee.unsw.edu.au/∼rui. With this ground truth infor-
mation, we can quantify the accuracy of the estimated motion
field Ṽi→j [n] by calculating a quality measure E, defined as

E =
1

N

∑
n

1

2

∥∥∥V[n]− Ṽ[n]
∥∥∥

1
, (8)

where N is the total number of pixels in a frame. This is
simply the mean absolute difference of all x and y components
in the motion field. We can also define EŌ, as the average
motion error excluding the occluded region,

EŌ =
1

N − ‖O‖
∑
n/∈O

1

2

∥∥∥V[n]− Ṽ[n]
∥∥∥

1
, (9)

Similarly, we can define EŌ&B̄, where B is the motion
boundary region defined earlier.

(a) First frame: f0 (b) f⊕,10

(c) x component of V0→2 (d) y component of V0→2

(e) O0→2 (f) B0

Fig. 9: The first frame in the horse sequence of 10 frames and some
ground truth associated with this frame. The frames are 640×480 in
dimension. The motion in the sequence is constant and the maximum
motion between two consecutive frames is 15 pixels. Only the
luminance information is used for motion search. Motion estimates
of the first two frames are shown in Figure 10.

We begin by considering the relatively complex test se-
quence shown in Figure 9, where four different sprites with
translation and rotation are composed on a background image

(a) True x component (b) image domain MSE ρomse

(c) MSE combined, ρ→0 (d) 2-bit combined, ρ⊕,→0

(e) MSE: ρ0 only (f) 2-bit: ρ⊕,0 only

(g) MSE: ρ1 only (h) 2-bit: ρ⊕,1 only

(i) MSE: ρ2 only (j) 2-bit: ρ⊕,2 only

(k) MSE: ρ3 only (l) 2-bit: ρ⊕,3 only

Fig. 10: Horizontal components of true motion V0→1 (in (a)) and
motion estimates Ṽ0→1 (in the rest) for the first two frames of the
horse sequence in Figure 9. It is shown as gray scale images (mid-
gray represents 0, each gray image is displayed with the maximum
contrast). 5 resolution levels are used in total, with a search range of
±20 at full pixel precision. The quality metrics E of the estimates
are shown in Table I
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TABLE I: Average motion errors for the horse sequence. The
ranking of each method, measured relative to each of the performance
measures E, EŌ and EŌ&B̄, are shown as subscripts in parentheses.

Matching Score E EŌ EŌ&B̄
ρomse 0.781(7) 0.620(6) 0.527(6)

ρ→0 0.650(4) 0.575(5) 0.476(4)

ρ⊕,→0 0.457(1) 0.371(1) 0.323(1)

ρ0 0.851 0.735 0.588
ρ⊕,0 0.653(5) 0.494(3) 0.438(3)

ρ1 0.741(6) 0.674 0.584
ρ⊕,1 0.498(2) 0.424(2) 0.368(2)

ρ2 0.853 0.793 0.733
ρ⊕,2 0.607(3) 0.563(4) 0.502(5)

ρ3 1.218 1.174 1.128
ρ⊕,3 0.907 0.889 0.829

with translation and rotation. We compare three different
matching scores for motion estimation: the proposed 2-bit
method; MSE in the original image domain; and a third mea-
sure formed by evaluating the MSE score separately on each
resolution level and combining the results using Equation (7).
These are denoted ρ⊕,→0, ρomse and ρ→0. We also compare
the performance of the proposed matching score and MSE
within individual resolution levels k, writing ρ⊕,k and ρk for
these results. Note that the matching window size for ρomse is
15 × 15, the matching window size for ρ⊕,k is explained in
Section VII, and the matching window size for ρk is the same
as ρ⊕,k.

Our results show that ρ⊕,k produces more robust motion
fields than ρk for all levels k. ρ⊕,→0 produces more robust
motion fields than ρ→0 and ρomse. The horizontal component
of these various motion estimates are shown in Figure 10
for one particular pair of frames from the sequence. The
average motion estimation errors over the entire sequence are
reported in Table I in terms of E, EŌ and EŌ&B̄. These
results are consistent with our early observations in [18], where
test frames with different sprites and background images are
used. Our results also show that an extra small non-zero noise
threshold δ in the thresholding Equations (2), (3) and (4) has
minimal effect on the overall performance of the algorithm.
When δ = 1 and δ = 4 the motion error E is 0.458 and
0.490 respectively, comparing to 0.457 in Table I where no
noise threshold δ is used. This is largely due to the ability of
the weighting cM,k to distinguish noise and structure in the
non-linear transform when combining matching scores from
all resolutions.

In the next two subsections, we separately evaluate the
performance of the proposed method under more restrictive
conditions, so as to understand the features of the algorithm
in greater detail. In the final subsection, we test the proposed
approach on a standard optical flow dataset.

A. Performance with Global Rotation

We now consider a simple test sequence shown in Fig-
ure 11a, where the only motion is a global rotation such that
the frames contain no motion discontinuities. This corresponds
to the analysis performed earlier in Section VI, where the
two matching windows on two frames are related not only

(a) Rose sequence (b) True x component (c) ρomse, EŌ = 1.049

(d) ρ0, EŌ = 3.441 (e) ρT,0, EŌ = 4.294 (f) ρ⊕,0, EŌ = 1.206

(g) ρ→0, EŌ = 1.553 (h) ρT,→0, EŌ = 1.323 (i) ρ⊕,→0, EŌ = 0.889

Fig. 11: (a) is the first frame in the rose sequence of 10 frames.
The frames are 256 × 256 in dimension. A global motion of
10◦ rotation is introduced between consecutive frames. Only the
luminance information is used for matching. (b) is the horizontal
components of the true motion V0→1. The rest is the horizontal
components of motion estimates Ṽ0→1 for the first two frames of the
rose sequence shown in (a). It is shown as gray scale images (mid-
gray represents 0, each gray image is displayed with the maximum
contrast). 5 resolution levels are used in total, with a search range
of ±30 at full pixel precision. Note that Ō excludes the regions that
are occluded by the frame boundary. The quoted motion errors EŌ
are averages within 10 consecutive frames.

by translation but also rotation.
Our results show that the proposed method with dilation

provides far better utilization of the high frequency subband
information than without dilation (i.e. using ρT,→0 or setting
ε = 0) or using MSE as the matching score. The 2-bit final
combined result ρ⊕,→0 is also superior to the image domain
MSE approach ρomse. The actual horizontal estimated and
ground truth motion fields are also shown in Figure 11.

One observation from this test sequence is that when f0 is
rich in edge features, the motion estimates using ρ⊕,→0 are
very similar to ρ⊕,0. This suggests that the combined result
mainly comes from the highest resolution level. This also
means low frequency effects such as illumination variation,
would not affect the accuracy of the proposed approach for
such content, unlike MSE-based approaches. However, such
effects are not present in these experiments.

B. Performance with Motion Discontinuities
In this section, we deliberately introduce motion discon-

tinuities by composing a single sprite on top of a stationary



11

(a) f0 in sequence A (b) f0 in sequence B (c) f0 in sequence C

(d) using ρ⊕,→0 (e) using ρ⊕,→0 (f) using ρ⊕,→0

(g) EŌ&B̄=0.536 (h) EŌ&B̄=0.051 (i) EŌ&B̄=0.040

(j) using ρomse (k) using ρomse (l) using ρomse

(m) EŌ&B̄=0.162 (n) EŌ&B̄=0.092 (o) EŌ&B̄=0.128

Fig. 12: Each column shows horizontal components of motion
estimates and differences between ground truth of two frames from
one of the test sequences A, B and C. Each of the three sequences
contains one sprite moving on a stationary background image and
the sprite is moved 8 pixels to the left and 4 pixels down between
consecutive frames. Sequence A represents a sprite with sparse
texture on a background with sparse texture, Sequence B represents
a sprite with sparse texture on a background with dense texture and
Sequence C represents a sprite with dense texture on a background
with dense texture. The improvement of the proposed method using
ρ⊕,→0 over ρomse can be well observed in the motion estimates of
sequence C. The first row contains frames from sequences of 10
frames which are 640× 480 in dimension. The second row contains
the results using the proposed 2-bit method ρ⊕,→0; the differences
are shown in the third row. The fourth row contains results using
ρomse; the differences are shown in the fifth row. All components and
differences are shown as grey images (mid-gray represents 0, each
gray image is displayed with the maximum contrast). In the difference
image, the occluded and motion boundary region is labeled as black.
The quoted motion errors EŌ&B̄ are averages within each sequence.

background. All motions are translational so that we can focus
on the ability of the proposed algorithm to accurately identify
the locations of motion discontinuities.

Our results show that when the regions of two different

motions both contain sufficient edge features, the proposed 2-
bit method ρ⊕,→0 is better at determining motion boundaries
than image domain MSE ρomse. It has also been observed
in [19] that motion estimation on overlapping blocks is able
to resolve motion boundaries more accurately than what the
block size may suggest. When one of the motion regions does
not have sufficient edge features, the proposed method tends to
propagate the motion from the other region to this region (from
sprite to background or from background to sprite), while
ρomse can utilize the low frequency information to determine
motion at this smooth region. The horizontal components
of the estimated motion fields on three test sequences with
different amounts of edge features are shown in Figure 12.
Figure 12 also shows the horizontal component differences
between the estimates and the ground truth with O and B
regions labeled.

C. Performance on Optical Flow Dataset

TABLE II: Motion error E of motion estimates on the Middlebury
dataset using different matching scores. The ρosad column is matching
SAD in the image domain; the “2-bit best” column is the best result
selected from 2-bit method in Table III and 2-bit-abs method in
Table IV; the “1-bit best” column is the best result selected from
1-bit method in Table V. The best performing method is labeled
with a subscript “1” in parentheses.

Method ρosad ρomse ρ⊕,→0 2-Bit Best 1-Bit Best
Dimetrodon 0.347 0.371 0.267 0.265(1) 0.292

Grove2 0.568 0.640 0.343 0.331(1) 0.352
Grove3 1.162 1.340 0.731 0.651(1) 0.671

Hydrangea 0.350 0.384 0.198 0.197(1) 0.201
RubberWhale 0.292 0.317 0.203 0.202(1) 0.207

Urban2 1.229 1.425 0.937 0.851(1) 0.961
Urban3 1.945 2.078 1.919 1.736 1.652(1)

Venus 0.607 0.660 0.320 0.297(1) 0.415

TABLE III: Motion error E of motion estimates on the Middlebury
dataset using 2-bit method ρ⊕,→0 with different sizes of dilation
kernel Bε. The best performing dilation in each row is labeled with
a subscript “1” in parentheses.

Method ε = 0 ε = 1 ε = 2 ε = 3 ε = 4

Dimetrodon 0.578 0.265(1) 0.267 0.267 0.268
Grove2 0.335 0.331(1) 0.336 0.343 0.353
Grove3 0.651(1) 0.706 0.727 0.731 0.732

Hydrangea 0.200 0.197(1) 0.197(1) 0.198 0.198
RubberWhale 0.214 0.202(1) 0.203 0.203 0.204

Urban2 1.042 0.902(1) 0.919 0.937 0.950
Urban3 1.777(1) 1.817 1.861 1.919 1.993
Venus 0.335 0.297(1) 0.310 0.320 0.330

In this section, we test the proposed 2-bit method ρ⊕,→0,
2-bit-abs method and 1-bit method with different amount of
dilation on a standard optical flow data set from Middlebury
[17] and compare them with image domain MSE ρomse and
image domain sum of absolute difference (SAD) ρosad.

Our results show that the proposed methods outperform
image domain MSE and SAD on all test frames in the
Middlebury dataset. This is shown in Table II. Our results also
show that the dilation step almost always helps to improve the
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TABLE IV: Motion error E of motion estimates on the Middlebury
dataset using 2-bit-abs method with different sizes of dilation kernel
Bε. The best performing dilation in each row is labeled with a
subscript “1” in parentheses.

Method ε = 0 ε = 1 ε = 2 ε = 3 ε = 4

Dimetrodon 0.637 0.271(1) 0.274 0.277 0.278
Grove2 0.353 0.337(1) 0.346 0.357 0.368
Grove3 0.685(1) 0.693 0.741 0.763 0.769

Hydrangea 0.208 0.202(1) 0.204 0.205 0.205
RubberWhale 0.220 0.205(1) 0.206 0.207 0.207

Urban2 1.213 0.851(1) 0.910 0.954 0.973
Urban3 1.844 1.736(1) 1.792 1.873 1.953
Venus 0.383 0.314(1) 0.337 0.348 0.353

TABLE V: Motion error E of motion estimates on the Middlebury
dataset using 1-bit method with different sizes of dilation kernel Bε.
The best performing dilation in each row is labeled with a subscript
“1” in parentheses.

Method ε = 0 ε = 1 ε = 2 ε = 3

Dimetrodon 0.515 0.292(1) 0.304 0.425
Grove2 0.352(1) 0.452 0.939 3.401
Grove3 0.671(1) 1.031 1.890 4.945

Hydrangea 0.201(1) 0.242 0.604 2.369
RubberWhale 0.213 0.207(1) 0.283 0.959

Urban2 1.311 0.961(1) 1.654 4.315
Urban3 1.854 1.652(1) 2.214 3.370
Venus 0.415(1) 0.562 0.887 1.289

motion estimates for the 2-bit method, 2-bit-abs method and
1-bit method. For this particular dataset, having ε larger than
1 does not help to improve the result Further. We think this
is perhaps because the dataset does not contain the amount of
rotation that the chosen dilation kernel size ε = 3 is trying to
tolerate. This is shown in Table III, Table IV and Table V.

XI. CONCLUSION

We propose, analyse and evaluate a matching score on
a class of non-linear transforms of the detail bands of a
Laplacian pyramid, in a dense block-based full-search mo-
tion estimation setting. The non-linear transform involves a
thresholding and a morphological dilation step. Our analysis
shows that the proposed approach utilises high frequency
subbands information better than MSE when the motion is
non-translational, and provides guidance in choosing the pa-
rameters for the non-linear transforms and subsequent match-
ing. In our experiments, the proposed approach is shown to
produce more accurate motion estimation than MSE both in
individual detail bands and in the combined multi-resolution
matching score. This is especially true when the motion is
non-translational, validating the analysis. The matching score
from each detail band is combined using a local structural
content estimator, which effectively gives a content-adaptive
block size, addressing the well known aperture problem to
some extent.

In addition, the proposed motion estimation method is
capable of resolving motion boundaries more effectively than
MSE. We hypothesise that this is because the thresholding
process discards local contrast so that high contrast regions
are less likely to dominate low contrast regions within the
matching window.

We also describe an efficient implementation of the ap-
proach and show that its computational complexity is similar
to the usual MSE block-based motion estimation.

Overall, this paper provides useful analysis and evaluation
on a class of multi-resolution non-linear matching scores that
may have broad applicability.
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