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Abstract—In a recent work, the authors proposed a novel
paradigm for interactive video streaming and coined the term
JPEG2000-Based Scalable Interactive Video (JSIV) for it. In
this work, we investigate JSIV when motion compensation is
employed to improve prediction, something that was intentionally
left out in our earlier treatment. JSIV relies on three concepts:
storing the video sequence as independent JPEG2000 frames
to provide quality and spatial resolution scalability; prediction
and conditional replenishment of code-blocks to exploit inter-
frame redundancy; and loosely-coupled server and client policies
in which a server optimally selects the number of quality
layers for each code-block transmitted and a client makes the
most of the received (distorted) frames. In JSIV, the server
transmission problem is optimally solved using Lagrangian-style
rate-distortion optimization. The flexibility of JSIV enables us
to employ a wide variety of frame prediction arrangements,
including hierarchical B-frames. JSIV provides considerably
better interactivity compared to existing schemes and can adapt
immediately to interactive changes in client interests, such as
forward or backward playback and zooming into individual
frames. Experimental results show that JSIV’s performance is
inferior to that of SVC in conventional streaming applications
while JSIV performs better in interactive browsing applications.

Index Terms—Teleconferencing, video signal processing, image
coding, image communication, weighted acyclic directed graphs.

I. INTRODUCTION

REMOTE interactive browsing of video has traditionally
been limited to pause and random access to some

predetermined access points. This limitation is a result of
employing standard video compression techniques that can,
at best, provide limited interactivity options.

This limited interactivity and other issues motivated research
in scalable video coding that can provide considerably better
interactivity and can solve some of the other existing problems
in video storage and streaming. Research in the area has pro-
duced some promising results [1], [2] and recently a scalable
video coding (SVC) extension to H.264/AVC [3] has been
approved within the ISO working group known as MPEG, to
provide improved scalability options.

Despite these improved options, the encoder still imposes
restrictions on the encoded stream that limit accessibility. For
example, in order to deliver a given frame to the client, a server
would have to send enough data from the group of pictures
(GOP) that contains this frame, possibly the whole GOP, and
the client would have to decode potentially many frames in
order to invert the motion compensated transform used during
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compression and extract the desired frame. The reader can find
other examples where accessibility is limited by the encoder
in [4]–[6].

The JPEG2000 Interactive Protocol (JPIP) [7], [8], on the
other hand, provides many of the desirable features of scalable
interactive browsing, such as spatial and temporal scalability,
quality scalability, and spatial and temporal accessibility, but
it only works for still images and motion-JPEG20001.

Recently, we proposed the JPEG2000-Based Scalable In-
teractive Video (JSIV) paradigm as a way to provide better
flexibility, scalability, and interactivity for video streaming
and browsing. Some of JSIV’s concepts were introduced
progressively in [6], [10]–[14]; the objective of this work and
the work in [5] is to elaborate on the concepts behind JSIV
and formalize them.

In [5], we discussed the philosophy behind JSIV and the
scenarios in which JSIV is favorable (the interested reader can
refer to [4], [5] for more details), but the discussions in [5]
were intentionally limited to the case in which JSIV employs
prediction without motion compensation. In this work, we turn
our focus to the case of JSIV with motion compensation. To
this end, we investigate the effect of motion compensation
on distortion propagation from reference frames to predicted
frames, we propose a way of approximating distortions when
motion compensation is involved, and we investigate the
accuracy of these approximations and their storage require-
ments and computational costs. We also propose policies that
facilitate a realistic implementation of a JSIV system that
employs motion compensation.

JSIV relies on:
• JPEG2000 to independently compress the individual

frames of the video sequence and provide for quality and
spatial resolution scalability as well as random accessi-
bility.

• Prediction, with or without motion compensation, and
conditional replenishment of JPEG2000 code-blocks to
exploit temporal redundancy.

• Loosely-coupled server and client policies. The server
policy aims to select the best number of quality layers
for each precinct it serves and the client policy attempts
to produce the best possible reconstructed frames from
the data the client has. Each of these policies may
evolve separately without breaking the communication
paradigm.

Figure 1 shows a simplified block diagram of a JSIV system
that employs motion compensation. The system has three basic

1Motion-JPEG2000 [9] is a video file format based on JPEG2000. The
file contains some video timing information, and each frame is stored
independently in its own code-stream.
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Fig. 1. A simplified block diagram of the proposed JSIV delivery system. The client distortion estimation block, shown in gray, estimates client-side
distortions in reconstructed frames without reconstructing them.

entities: the preprocessing stage, the server, and the client.
The preprocessing stage is responsible for compressing each
frame individually into JPEG2000 format and preparing the
side information needed during video serving.

The server is composed of two main sub-blocks: the client
distortion estimation block (CDEB) and the rate-distortion
optimization block (RDOB). The CDEB models the distortions
in each code-block or precinct of each frame, taking into con-
sideration the effect of motion compensation at the client, and
generating approximate distortion information without actually
reconstructing any frames; it relies on its knowledge about
transmitted information and an assumed client policy which
does not need to be exact. The RDOB performs Lagrangian-
style rate-distortion optimization to decide the number of
quality layers to be sent for each precinct of each frame.
It also decides on any side information (including motion
information) needed by the client to best exploit the frame
data.

The server communicates with the client employing only
JPIP [7], [8]; JSIV stores side information in additional
components in each frame, conceptually known as meta-
components or meta-images. This allows the use of JPIP
without any modifications to send both code-block data and
side information.

The client receives compressed code-block bit-streams and
side information (including motion information). Using this
information and aided by a client policy, the client selects
the source of data to use for each code-block. In particular,
the client has the option to decode an available code-block
bit-stream directly or to predict the code-block from nearby
frames (possibly having much higher quality), employing
motion compensation.

A number of researchers have realized the limited interactiv-
ity provided by conventional video streaming practices [15]–

[20], and have devised different approaches that are favorable
in certain situations. A survey of these approaches is given in
[4], [5].

The rest of this work is organized as follows. Section II
discusses the effects of motion compensation on distortion
propagation. Section III describes “oracle” client and server
policies that enable us to discuss the basic JSIV optimization
algorithm. Section IV proposes a way of significantly reducing
the computational cost associated with estimating distortions
within the server. Section V gives the actual client and
server policies and elaborates on side-information delivery. In
Section VI, we discuss the computational cost and storage
requirements for JSIV deployment. Section VII gives some
experimental results which allow JSIV to be compared with
traditional video coding approaches. Section VIII discusses the
effects of the approximations we introduced in order to achieve
a realistic implementation of JSIV. Finally, Section IX states
our conclusions and points to future work.

II. THE EFFECTS OF MOTION COMPENSATION ON
DISTORTION PROPAGATION

The use of motion compensation to improve prediction is
central to this paper, and we find it convenient at this stage
to consider the effect of motion compensation on distortion
propagation from reference frames to predicted frames. We
present a quantitative analysis of this effect in Section IV.

JSIV employs JPEG2000 to store individual frames;
JPEG2000 utilizes the two-dimensional discrete wavelet trans-
form (2D-DWT) to decompose a frame, fn, into a set of sub-
bands, and each sub-band is partitioned into rectangular blocks
known as code-blocks, Cβn , as shown in Figure 2. Although
code-blocks are coded independently, they are not explicitly
identified within the code-stream; code-blocks are collected
into larger groupings known as precincts, Pπn , also shown



NAMAN AND TAUBMAN : JPEG2000-BASED SCALABLE INTERACTIVE VIDEO (JSIV) 3

LL2 HL2

LH2 HH2

Gγn
Cβn

Pπn

HL1

LH1 HH1

Fig. 2. Relation between the different partitions in this work. 2D-DWT
decomposes a given frame, fn, into sub-bands; a two-level decomposition is
shown with sub-band labels that follow sub-band naming conventions. Each
sub-band is partitioned into code-blocks, Cβn ; in this figure, for example, each
sub-band at the lower decomposition level, LL2, HL2, LH2, and HH2, has 4
code-blocks while, at the higher level, each has 16 code-blocks. Each sub-band
is also partitioned into smaller blocks, known as grid blocks. A grid block, Gγn ,
is shown as a small square; in the figure, each code-block has 16 grid blocks.
A precinct, Pπn , groups code-blocks that contribute to the same spatial region
from three sub-bands, HLd, LHd, and HHd, at a given decomposition level,
d; precincts for the LLD sub-band, where D is the number of decomposition
level, contains code-blocks from that sub-band only.

in Figure 2. For image browsing/streaming applications it is
preferable that each precinct has only one code-block from
each of its constituent sub-bands since this minimizes the
spatial impact of a precinct.

In JSIV, the samples of a code-block are obtained either
from decoding the zero or more quality layers, qβn , available
for that code-block or by predicting them from nearby frames;
we write Cβ∗n for the de-quantized samples and Cβ→n for the
predicted samples.

In this work, prediction involves the use of motion compen-
sation; we always employ motion compensation to synthesized
frames at the highest available resolution2. A widely-employed
technique for improving prediction in predictive video coding
schemes is to use some position-dependent linear combination
of more than one predictor; each of these predictors is obtained
from some reference frame using motion compensation. Here,
we write A(fn) for the set of reference frames that directly
contribute to fn’s prediction, and we employ a linear combi-
nation given by

f→n =
∑

fr∈A(fn)

grn · Wr→n(fr) (1)

whereWa→b is the motion compensation operator mapping fa
to fb. We choose to use position-independent scaling factors,
grn, in this work; space-varying scaling factors, however, can
be readily incorporated into the approach. Thus, predicted
samples of a given code-block, Cβ→n, are obtained by applying

2An alternate approach is to employ in-band motion-compensation [21];
however, experimental results reveal that this choice has a negative impact on
the quality of reconstructed video.

the 2D-DWT to f→n and selecting the appropriate sub-band
and region that corresponds to Cβn .

Rather than estimating distortions on a code-block basis,
we estimate them on a finer grid; we partition each sub-
band in frame fn into rectangular blocks that we name grid
blocks and denote by Gγn , as shown in Figure 2. The reason
for this finer partitioning is to provide a finer description of
distortion in the event that a predicted frame becomes itself a
reference frame for motion compensation; this case is depicted
in Figure 3 where frame fi is directly decoded (i.e. decoded
independently), frame fj is predicted from fi, and frame fk is
predicted fj . We discuss the effect of grid block dimensions
on the accuracy of distortion modeling in Section VIII. In
summary, each precinct, Pπn , contains one or more code-
blocks, Cβn ; each of which contains one or more grid blocks
Gγn .

We write Dγ
∗n = ‖Gγ∗n − G̊γn‖2 for the distortion associated

with de-quantized samples of grid block Gγn in frame fn, where
G̊γn represent the full-quality grid block samples. Similarly, we
write Dγ

→n for the distortion associated with Gγ→n. Using an
additive distortion model, the frame distortion attributed to a
precinct Pπn can be approximated by

Dπ
n =

∑
Gγn⊂Pπn

Gbγ ·Dγ
n (2)

where Gbγ is the energy gain factor of sub-band bγ to which
grid block Gγn belongs and Gγn ⊂ Pπn enumerates the grid
blocks contained within precinct Pπn . Similar approximations
can also be written for both Dπ

∗n and Dπ
→n. These precinct

distortion approximations are valid provided that the wavelet
transform basis functions are orthogonal or the quantization
errors in each of the samples are uncorrelated. Neither of
these requirements is strictly satisfied; however, the well-
known CDF 9/7 wavelet kernels used in our experimental
investigations in Section VII have nearly orthogonal basis
functions.

Due to the shift-variant behavior and the slow response roll-
off of the DWT, any distortion in grid block Gγi of frame
fi contributes, in general, to the distortion of more than one
grid block in frame fj when motion compensated prediction
is employed; this behavior is depicted in Figure 3. We say that
the distortion in Gγi leaks to the set of grid blocks denoted by
S(Gγi ); this leakage behavior is also documented in [22].

We show in Section IV that the distortion energy which
leaks from grid block Gγi of sub-band bi in frame fi to grid
block Gγj of sub-band bj in frame fj can be approximated by
G
bi→bj
W(γj)

·Dγ
i , where Gbi→bjW(γj)

is a position-dependent (i.e. grid
block dependent) distortion gain; the subscript of the distortion
gain,W(γj), emphasizes the dependency of the distortion gain
on the motion vector field around its respective grid block, Gγj .

It is obvious from Figure 3 that prediction creates depen-
dency among grid blocks of different frames; this dependency
can be represented by a weighted acyclic directed graph
(WADG) [23], as shown in Figure 4. In the context of Figure 4,
the nodes of the graph represent grid-blocks, but, in general,
they can represent frames, precincts, or code-blocks in other
contexts. The Antecedents of node n, denoted by A(n) are
the set of nodes that contribute to node n, and the Succedents
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Fig. 3. Distortion propagation from reference frames to predicted frames; here, frame fi is directly decoded, frame fj is at least partially predicted from
fi, and frame fk is at least partially predicted predicted from fj . The figure shows a two-level decomposition of each frame with sub-band labels that follow
sub-band naming conventions. The figure also shows code-blocks as squares; grid-blocks are not shown to reduce clutter. Decoded code-blocks are shown
as ( ), predicted code-blocks as ( ). Arrows between fi and fj show distortion propagation from a given grid-block, Gγi , to many grid blocks in fj ; we
approximate the distortion propagated along each arrow by G

bi→bj
W(γj)

multiplied by the distortion in Gγi . The dashed arrows between fj and fk represent
possible distortion propagation that does not occur because the destination code-blocks in fk are replaced by directly decoded code-blocks.

of node n, denoted by S(n) are the set of nodes that node n
contributes to. The dependency graph is directed, with arcs,
each of which is emanating from a grid block in a reference
frame and ending in a grid block in a predicted frame; the
weight along each arc represents the distortion gain, Gbi→bjW(γj)

.
The dependency graph is acyclic because if Gγi is contributing
to the prediction of Gγj , there is no way, direct or indirect, that
Gγj contributes to the prediction of Gγi .

In general, the distortion associated with predicted samples,
Dγ
→n, is due to a combination of motion modeling errors

(referred to as motion distortion) and errors in their prediction
reference samples (referred to as attributed distortion); the
errors in the reference samples are either due to quantization
distortion (for decoded reference blocks) or a further com-
bination of motion and attributed distortions (for predicted
reference blocks). For example, grid block G1k in Figure 4a
suffers from a combination of motion distortion and attributed
distortions due to distortions in A(G1k) = {G2j ,G4j }; grid block
G4j suffers from quantization distortion while G2j suffers from
other motion and attributed distortions.

In this work, we assume that motion and attributed er-
ror components are approximately uncorrelated, so that their
squared error distortions are additive. Note, however, that
the attributed distortion in Gγ→n may involve a mixture of
quantization and other motion distortions depending on how
each of its prediction source grid blocks was formed. This adds
doubt about the validity of our assumption, since it requires
successive motion distortions to be uncorrelated. Indeed, ex-
perimental results from [4], [5] and in Section VIII reveal
that inaccuracies in this approximation have a measurable
negative impact on the quality of reconstructed video, mainly
due to accumulation of errors in estimating motion distortion.
Nevertheless, we find this approximation necessary to develop
a workable distortion estimation algorithm, as detailed in
Subsection IV-A. Under this assumption, we can use (1) to

write
Dγ
→n ≈ DM,γ

→n +
∑

r3fr∈A(fn)

g2rn ·DA,γ
r→n︸ ︷︷ ︸

DA,γ
→n

(3)

where DM,γ
→n is the motion distortion and DA,γ

→n is the attributed
distortion. In the above, we have also assumed that errors
among the different reference sources in A(fn) are approxi-
mately uncorrelated, so that their squared error distortions add.
The motion distortion is the distortion in grid block Gγn when
full quality reference frames are used.

In the following paragraphs, we present a couple of exam-
ples to make this additive model clearer.
Example 1: Consider the distortion in G1k of Figure 4a. This
distortion is equal to DM,1

→k + DA,1
→k, but DA,1

→k = G
2j→1k
W(1k)

·
D4
∗j + G

1j→1k
W(1k)

· D2
→j . We also have D2

→j = DM,2
→j + DA,2

→j ,

where DA,2
→j = G

2i→1j
W(2j)

·D5
∗i + G

1i→1j
W(2j)

·D1
∗i; thus, DA,1

→k can
be written in terms of DM,2

→j and D4
∗j , D

5
∗i, D

1
∗i. In fact, the

distortion in any predicted grid block can be written as a linear
combination of quantization distortion and motion distortion.

Another result of employing prediction is that the distortion
in a given grid block, Gγn , contributes distortion to all grid
blocks in its succedents; that is, all the grid blocks in S(Gγn)
and in S(S(Gγn)) and so forth, as shown in Figure 4a. It is
useful to collect the contributions of grid block Gγn to the
overall distortion of all frames under consideration in the
form (1 + θγn) ·Dγ

n, where θγn is what we call the additional
contribution weight; these weights can be determined by
traversing the converse of the dependency WADG as shown
in Figure 4b.
Example 2: Consider the distortion contribution of grid block
G2j to the distortion in frames fj and fk of Figure 4a. Grid
block G2j contributed G1·D2

j to frame fj and G1·G
1j→1k
W(1k)

·D2
j+

G2 ·G
1j→2k
W(5k)

·D2
j , where G1 and G2 are the energy gain factors

of sub-bands 1 and 2, respectively. The total contribution of
grid block G2j can be written as (1 + θ2j ) · G1 · D2

j , where
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Fig. 4. (a) A typical WADG representing distortion propagation from reference grid blocks to predicted grid blocks. Each column represent one frame; frame
fi is directly decoded, frame fj is predicted from fi, and frame fk is predicted from fj . Each node represents one grid block; an “∗” on the bottom-left side
of a node indicates that the node is directly decoded rather than predicted. Each arrow represent distortion propagation with a distortion gain of G

bi→bj
W(γj)

.
(b) The converse of the WADG in (a). Arrows indicate back-propagation of contribution weights from predicted frames to reference frames.

θ2j = G
1j→1k
W(1k)

+ G2

G1
·G1j→2k
W(5k)

; that is, in general, a grid block,
Gγj , contributes (1 + θγj ) ·Gbγ ·D

γ
→j when it is predicted and

(1 + θγj ) · Gbγ · D
γ
∗j when it is directly decoded. Note that,

when G2j is predicted, its distortion contribution can be written
as (1 + θ2j ) ·G1 ·DM,2

→j + (1 + θ2j ) ·G1 ·DA,2
→j , where the last

term represents contributions from grid blocks in fi.

III. ORACLE CLIENT AND SERVER POLICIES

In this work, prediction involves motion compensation at the
client. The server itself calculates or estimates the impact of
motion compensation so as to determine what content should
be delivered, but the content which is delivered corresponds to
independently compressed frames. The policies presented here
are termed “oracle” policies because of the underlying unreal-
istic assumption that the client can replicate the server’s rate-
distortion optimization decisions, achieving the same quality
of reconstructed video as that which the server is maximizing.

A. Oracle Client Policy
It is possible for the client to make decisions on a grid

block basis, a code-block basis, or at the coarser level of
precincts. We choose to work with precincts because the
smallest piece a server can send in JPIP is one quality layer
of one precinct (formally known as a packet); this means that
the server transmits precinct-optimized data. Thus, for each
precinct, Pπn , the client chooses either to use the received zero
or more quality layers, qπn , that produce de-quantized samples,
Pπ∗n, with an associated distortion of Dπ

∗n or to use predicted
samples, Pπ→n, with an associated distortion of Dπ

→n. Ideally,
the client chooses the samples that produce lower distortion;
that is,

Dπ
n = min {Dπ

∗n, D
π
→n} (4)

This simple client policy is unrealistic, as the client has
no access to the actual media and therefore is incapable of
calculating distortions, especially for Dπ

→n; this policy will
be revised in Section V with a realistic policy.

B. Oracle Server Policy

JSIV optimization is performed over windows of frames.
Each frame within the window of frames (WOF) has a chance
of contributing data to the interactive session. We refrain from
using the term group of pictures (GOP) to describe these
frames so as to avoid confusion; the selection of a WOF does
not imply any particular predictive relationship between its
frames.

The objective of the optimization problem at the server is
to achieve the minimum possible distortion in the WOF, Fs,
being optimized, subject to some length constraint. Thus, the
optimization problem involves selecting a number of quality
layers, qπn , with an associated cost of |qπn | bytes for each
precinct, Pπn , in Fs. Using (2), the server optimization problem
is cast as the minimization of a cost functional, Jλ, given by

Jλ =
∑
n∈Fs

∑
π∈fn

∑
Gγn⊂Pπn

GbγD
γ
n + λ ·

∑
n∈Fs

∑
π∈fn

|qπn | (5)

where λ is a Lagrangian parameter that is adjusted until the
solution which minimizes Jλ satisfies the length constraint.
The term that accounts for the cost associated with motion
information is omitted from (5) because, currently, we do not
employ a motion model that allows us, at serve-time and from
compressed description, to trade accuracy of the motion model
(distortion) for data rate on a per code-block or precinct basis.
The motion model used here is expressed, formulated, and
transmitted for frames as a whole rather than based on regions.
For such a case, the motion information cost is a constant and
can be ignored during optimization.

In general, each Fs has some of its precincts predicted, with
distortion Dπ

→n, and some directly decoded, with distortion
Dπ
∗n. We attach a hidden state variable, χπn, to each precinct
Pπn , where χπn = 0 for a predicted precinct and χπn = 1 for
an decoded precinct. In practice, we perform all our distortion
calculations on grid blocks Gγn , but decisions on the number of
quality layers qπn , and the state χπn are still made on a precinct
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basis. To stress this fact, we write q
π(γ)
n for the number of

quality layers associated with grid block Gγn such that this
variable takes on the value of qπn associated with precinct Pπn
to which grid block Gγn belongs; that is qπ(γ)n = qπn for all
Gγn ⊂ Pπn . This way, (5) can be written as

Jλ =
∑
n∈Fs

∑
π∈fn
χπn=0

∑
Gγn⊂Pπn

GbγD
γ
→n

+
∑
n∈Fs

∑
π∈fn
χπn=1

∑
Gγn⊂Pπn

GbγD
γ
∗n(qπ(γ)n )

+ λ ·
∑
n∈Fs

∑
π∈fn
χπn=1

|qπn | (6)

Direct minimization of (6) is difficult because of the inter-
dependencies that exist between predicted precincts and their
predictors as has been shown in Section II. For example, the
decision to make a given precinct, Pπj , in frame fj predicted
(χπj = 0) depends on the quality of its predictors, A(Pπj ), but
the quality of these predictors depends to some extent on χπj ;
using the precincts in A(Pπj ) for predicting Pπj increases their
associated additional contribution weights which results in the
assignment of more bytes (higher quality) to the precincts in
A(Pπj ) in the Lagrangian optimization.

We deal with this difficulty in a way similar to that we
employed in [4] and [5]; we start by utilizing the additive
distortion model of (3) in (6) to get

Jλ =
∑
n∈Fs

∑
π∈fn
χπn=0

∑
Gγn⊂Pπn

(1 + θγn) ·GbγDM,γ
→n

+
∑
n∈Fs

∑
π∈fn
χπn=1

∑
Gγn⊂Pπn

(1 + θγn) ·GbγDγ
∗n(qπ(γ)n )

+ λ ·
∑
n∈Fs

∑
π∈fn
χπn=1

|qπn | (7)

Here, we have decomposed the distortion in each grid block
into its original sources, a combination of quantization distor-
tion and motion distortion. The reader is referred to Example 1
at the end of Section II for a typical decomposition example,
and Examples 2 for example on calculating θγn.

Then, we employ an iterative approach that has two passes:
the contribution weight pass, Ψw; and the optimization pass,
Ψo. In Ψw, we visit all the frames within the WOF Fs in
the acyclic ordering3 of the converse dependency WADG4,
updating each additional contribution weight, θγn, in each
frame we visit, so that (7) correctly represents (6) subject
to {χπn}π and {qπn}π remaining constant; we update each θγn
using (21), as will be derived in Subsection IV-B.

In Ψo, we visit all the frames within Fs following the
acyclic ordering of the original dependency WADG this time.
In this pass, we select the values of {χπn}π and {qπn}π that

3It is always possible to arrange the vertices of a WADG in what is called
acyclic ordering [23], where each node is positioned after all of its reference
nodes and before any of its dependent nodes.

4For every WADG, there is a converse WADG that is obtained by reversing
all the arcs of the original WADG [23], as shown in Figure 4b.

minimize the cost functional of (7), while {θγn}γ are kept
constant.

To determine χπn and qπn for a given precinct, Pπn , we need to
identify the contribution of that precinct to the cost functional
Jλ of (7). This contribution is discussed in Example 2 of
Section II; that is, the effective distortion of a grid block, Gγn ,
is (1 + θγn) · Dγ

→n when Gγn is predicted and (1 + θγn) · Dγ
∗n

when Gγn is directly decoded. Therefore, for a precinct, Pπn ,
we write

D̂π
∗n(qπn) =

∑
Gγn⊂Pπn

(1 + θγn) ·GbγDγ
∗n(qπ(γ)n ) (8)

and

D̂π
→n =

∑
Gγn⊂Pπn

(1 + θγn) ·GbγDγ
→n (9)

for the weighted (effective) precinct distortion associated with
the de-quantized samples, Pπ∗n(qπn), and the weighted precinct
distortion associated with the predicted samples, Pπ→n, respec-
tively. Then, the effective cost contribution of a precinct, Pπn ,
to the cost functional of (7) is

Jπn,λ =

{
D̂π
→n, χπn = 0

D̂π
∗n(qπn) + λ · |qπn |, χπn = 1

(10)

Thus, for each precinct we visit in Ψo, we first update D̂π
→n

to its latest value, then we select the values of χπn and qπn
that yield the lowest precinct cost, Jπn,λ. Using this method,
multiple iterations of ΨwΨo might be needed to achieve the
lowest possible cost functional, Jλ. This iterative process
converges when a Ψo pass does not change any of the {χπn}π .

We showed in [5] that this two-pass iterative approach
converges in the absence of motion compensation, at least to
a local minimum. The argument in [5] is also applicable when
motion compensation is employed since, in both cases, Ψw is
not part of the rate-distortion optimization and the decisions
made during Ψo to minimize Jπn,λ are based on the correct
D̂π
→n value at the time that precinct is visited; Dγ

→n depends
on precincts that have already been optimized during this Ψo,
and θγn depends on precincts in frames that are yet to be visited
so that their χπi values have not changed since the time θγn was
computed. The interested reader is referred to [4] or [5] for
more details.

Next, we give a graphical interpretation and a corresponding
solution to (10). Figure 5 depicts a typical rate-distortion curve
for a precinct, Pπn . It can be easily shown that this curve
is convex, since each precinct layer is made up of convex-
by-construction code-block contributions [24]. The distortion-
length slope associated with quality layer qπn for this precinct
is λπn(qπn) = (Dπ

∗n(qπn − 1) − Dπ
∗n(qπn))/(|qπn | − |qπn − 1|).

The existence of predicted samples with distortion Dπ
→n

modifies the effective distortion-length convex hull whenever
Dπ
→n < Dπ

∗n(0) as shown in Figure 5. Thus, the distortion-
length slopes associated with the first few layers change to
λπ→n.

In the above, we have ignored the effect of additional
contribution weights for simplicity. In practice, we work with
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D
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to
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io
n
D

Length |qπn |

The Convex Hull of Pπn

χπn = 1

λπn(1)

λπn(2)

λπn(3)

λπn(4)

Dπ∗n

λ π→
n

Dπ→n

χπn = 0

DM,π
→n qT,π

→n = 2

Fig. 5. A typical distortion-length convex hull for a precinct Pπn , where each
large white circle ( ) represents one quality layer. Also shown in the figure
is the distortion associated with the predicted version of the precinct, Dπ→n,
when Dπ→n < Dπ∗n(0); the small black circles ( ) represent the modified
convex hull.

the terms D̂π
∗n(qπn) and D̂π

→n, as defined in (8) and (9),
respectively, writing

λ̂πn(qπn) =
D̂π
∗n(qπn − 1)− D̂π

∗n(qπn)

|qπn | − |qπn − 1|
(11)

for the weighted distortion-length slope associated with qπn
quality layers and λ̂π→n for the the weighted distortion-length
slopes associated with the first few layers. Since D̂π

∗n(qπn)
depends upon multiple grid-block weights θγn (see (8)), it is
possible that the λ̂πn(qπn) terms are no longer monotonically
decreasing, so the convexity of the precincts distortion-length
characteristics is no longer guaranteed. In practice, however,
this rarely occurs. Thus, the complete solution to the mini-
mization of (10) for oracle policies becomes

χπn =

{
1, Dπ

→n > Dπ
∗n(0) or λ ≤ λ̂π→n

0, otherwise
(12)

qπn =

{
max{q | λ̂πn(q) > λ}, χπn = 1

0, otherwise
(13)

IV. ESTIMATION OF DISTORTION AND
CONTRIBUTION WEIGHTS

At the server side, performing motion compensation and
then directly calculating distortions is not practical due to the
high computational requirements. It is important, therefore, to
develop a suitable approach for approximating distortion. The
problem of finding the weights, θγn, is closely related and must
also be subjected to complexity limiting approximations. This
section investigates these approximations.

Although the final result at the end of this derivation seems
intuitive, it is very easy to make mistakes in the derivation.
For this reason, we find it useful for the wider community to
have access to this derivation. The derivation presented here
is general in that it is done with expansive motion models
in mind; only the final result is limited to the case of non-
expansive translational models.

A. Distortion Propagation and Estimation

Figure 6 shows that a reference frame, fr, is obtained by
synthesizing its sub-band decomposition. The error in fr can
be expressed in terms of the errors at each location k in each
of its sub-bands, br, as

δfr =
∑
br

∑
k

δBbrr [k] · Sbrk

where Sbrk denotes the relevant synthesis vectors (they are
images). A predicted frame fn is obtained from fr by applying
the motion mapping operator, Wr→n, at the highest available
resolution, as shown in Figure 6. Since Wr→n is a linear
operator, the error contribution of fr to the predicted frame
fn is

δfr→n =
∑
br

∑
k

δBbrr [k] · Wr→n(Sbrk )

The attributed error at location p (shown in Figure 6) in the
predicted sub-band bn of fn, due to errors in location k of
sub-band br can be obtained by applying the linear analysis
operator Abnp for sub-band bn at location p; that is,

δBA,bn
r→n [p] =

∑
br

∑
k

δBbrr [k] ·
〈
Wr→n(Sbrk ), Abnp

〉
Assuming that the attributed errors in the sub-bands are

approximately uncorrelated5, the distortion power for some
regionRn around p in sub-band bn, shown in gray in Figure 6,
can then be approximated by∑

p∈Rn

∣∣δBA,bn
r→n [p]

∣∣2
≈
∑
br

∑
p∈Rn

∑
k

∣∣δBbrr [k]
∣∣2 · 〈Wr→n(Sbrk ), Abnp

〉2
︸ ︷︷ ︸

Dbr→bn
Rn

(14)

The fact that both the Wr→n(Sbrk ) and Abnp operators have
limited support with decaying envelopes means that Dbr→bn

Rn
depends mainly on the distortion contributions δBbrr [k] inside
and around the region Rr, being the projection of Rn onto
sub-band br. Figure 6 shows that Rn has a projection in every
sub-band in fr. All of these projections are shown in light gray
except for one, shown in dark gray; the darker projection is
the focus of the next discussion, but that choice is arbitrary
and, in fact, any projection can be used for this discussion. If
Rr is small enough such that the distortion around it can be
approximated by a uniform attributed noise power Dbr

Rr/ |Rr|,
we have

Dbr→bn
Rn ≈

Dbr
Rr
|Rr|

·
∑

p∈Rn

∑
k

〈
Wr→n(Sbrk ), Abnp

〉2
︸ ︷︷ ︸

Gbr→bn
W(p)

(15)

Here, Gbr→bnW(p) represents a power gain which reflects the

contribution of noise power around location k ≈
←−
Wbr→bn

r→n (p)
in sub-band br (shown in Figure 6) to the attributed distortion

5This assumption was discussed in Section II.
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2D-DWT decomposition
of the reference frame, fr .

2D-DWT decomposition
of the predicted frame, fn.

Reference frame, fr . Predicted frame, fn.

Synthesis Analysis

Motion
Compensation

(Wr→n)

k ≈
←−
Wbr→bn

r→n (p)

Rr
p

Rn

Fig. 6. The effect of distortion propagation from a reference frame fr to a predicted frame fn when the 2D-DWT is employed. In general, all the sub-bands
in fr contribute to the distortion in region Rn of frame fn. Most of these contributions, however, come from the projections of region Rn onto the sub-bands
of fr , which are shown in gray in the 2D-DWT decomposition of fr ; here, we focus on one such region, Rr . Region Rr encloses location

←−
Wbr→bn
r→n (p)

which corresponds to location p of Rn.

at location p in sub-band bn, where
←−
Wbr→bn

r→n maps locations
in sub-band bn of frame fn back to locations in sub-band br
of the reference frame fr, according to the motion model.
Denoting the average noise power Dbr

Rr/ |Rr| around Rr
by D̄br

r [k] and the average attributed sub-band noise power
around location p by D̄A,bn

r→n [p], (14) becomes

D̄A,bn
r→n [p] ≈

∑
br

D̄br
r

[←−
Wbr→bn

r→n (p)
]
· Ḡbr→bnW(p) (16)

where Ḡbr→bnW(p) is the average of the different values of Gbr→bnW(p)

around point p because of the different phases6 of p. Thus, it
is convenient to think of (16) as the noise power propagation
from the area around the point that corresponds to p in the sub-
bands of the reference frame, fr, to the area around point p
in the destination sub-band, with factors Ḡbr→bnW(p) representing
noise power gains.

Despite the fact that attributed noise can originate from any
of the sub-bands in the reference frame, most of the attributed
noise power in a given destination sub-band comes from
source sub-bands that are at the same or similar decomposition
levels in the reference frame [22]. Here, we formalize our
selection of source sub-bands.

It can be seen from (15) that Ḡbr→bnW(p) depends on the source
sub-band, destination sub-band, motion compensation operator
around p, and the type of wavelet transform being used. The
server is free to select amongst a variety of motion models
(e.g. block-based translational model or mesh-based affine
models); for these models, the server is free to choose coarse
or fine block sizes. For prediction references, the server is
also free to consider only one frame or employ some position-

6When sub-band br is from a coarser resolution (lower frequency) than
sub-band bn, the value of Gbr→bnW(p)

changes slightly from one p point to
the next depending on the phase of p. Since we are only interested in an
approximate distortion, averaging these values is sufficient.

Server

frame fj

Pπ∗j(qπj )
Dγ
∗j(q

π(γ)
j )

DM,γ
i→j

Wi→j

qT,π
i→j

DM,γ
→j

W→j
qT,π
→j

DM,γ
k→j

Wk→j

qT,π
k→j

frame fq

Pπ∗q(qπq )
Dγ
∗q(q

π(γ)
q )

DM,γ
p→q

Wp→q

qT,π
p→q

DM,γ
→q

W→q
qT,π
→q

DM,γ
r→q

Wr→q

qT,π
r→q

Po
ss

ib
le

Pr
ed

ic
to

rs

Rate-Distortion Optimization

qT,π
→n

W→n
Pπ∗n(qπn)

Client

Fig. 7. The server can potentially explore more than one prediction model
for a given frame and select the most appropriate one. To do that the server
needs to store Dγ∗n(q

π(γ)
n ) and Pπ∗n(qπn) for each frame, and qT,π

→n, W→n,
and DM,γ

→n for each predictor. Only Pπ∗n(qπn), q
T,π
→n, and W→n are delivered

to the client.

dependent linear combination of more than one nearby frame.
Figure 7 depicts the case of a server that can, at serve time,
choose a prediction model from a few possible models. For
the convenience of this work, we focus only on the block-
based translational model. Thus, for a given source sub-band,
destination sub-band, and type of wavelet transform, the value
of Ḡbr→bnW(p) is a cyclo-stationary function of the spatial shift
employed by the motion compensation operator. It is always
possible to find a maximum value for Ḡbr→bnW(p) over the set of
possible spatial shifts, which we denote by Ḡbr→bnmax .

For a given destination sub-band, the criterion we employ
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is to only select the source sub-bands for which Ḡbr→bnmax is
greater than or equal to a Significance Threshold, TS ; that is,
the set of source sub-bands that have bn as their destination
sub-band, denoted by A(bn), is given by

A(bn) =
{
br|Ḡbr→bnmax ≥ TS

}
(17)

Table I shows the set of source sub-bands associated with
each destination sub-band, for the cases TS = 0.25, TS =
0.10, and TS = 0.05, when a translational motion model is
employed with CDF 9/7 irreversible wavelet transform and 5
levels of spatial decomposition. We discuss the impact of the
significance threshold on the accuracy of distortion estimation
in Section VIII.

For convenience of implementation, we approximate D̄br
r [k]

as constant over grid blocks, Gγr , writing D̄br
r [k] = Dγr

r / |Gγrr |
for all k ∈ Gγrr . We similarly approximate D̄A,bn

r→n [p], writing
D̄A,bn
r→n [p] = DA,γn

r→n/ |Gγnn | for the attributed distortion in grid
block Gγnn due to errors in frame fr. Moreover, we use the
motion model to directly map7 index γn from sub-band bn to
index γr in sub-band br; that is, γr =

←−
Wbr→bn

r→n (γn). Under
these conditions, (16) can be recast as

DA,γn
r→n
|Gγnn |

≈
∑

br∈A(bn)

γr=
←−
Wbr→bn
r→n (γn)

Dγr
r

|Gγrr |
· Ḡbr→bnW(γn)

(18)

where Ḡbr→bnW(γn)
is Ḡbr→bnW(p) at grid block Gγnn that contains

location p. Since our grid blocks all have the same size, (18)
becomes

DA,γn
r→n ≈

∑
br∈A(bn)

γr=
←−
Wbr→bn
r→n (γn)

Dγr
r · Ḡ

br→bn
W(γn)

(19)

Having estimated DA,γn
r→n using (19), these estimates are em-

ployed in (3) to find Dγ
→n.

B. Estimation of Contribution Weights
The problem of estimating the additional contribution

weights, θγn, is clearly related to the distortion estimation
problem above.

We write S(br) for the set of sub-bands in a predicted frame,
fn, that use br as their prediction reference; that is,

S(br) =
{
bn|Ḡbr→bnmax ≥ TS

}
(20)

We write χπ(γn)n for the hidden state variable associated with
grid block Gγnn such that χπ(γn)n = χπn for all Gγnn ⊂ Pπn ; in
view of (19) and (20), and denoting the set of frames that are
predicted from fr by S(fr), the additional contribution weight
for grid block Gγrr is

θγrr =
∑

n3fn∈S(fr)

g2rn ·
∑

bn∈S(br)
γn=
−→
Wbr→bn
r→n (γr)

χπ(γn)
n =0

Gbn
Gbr
· Ḡbr→bnW(γn)

· (1+θγnn )

(21)

7Here, we are mapping power from a reference sub-band, br , to a
destination sub-band, bn; therefore, if more than one index γr maps to the
same γn (for example, when br is from a finer resolution in the wavelet
decomposition), it is sufficient to select one representative distortion from br ;
ideally, the γr index that maps to the center of the Gγnn .

where
−→
Wbr→bn

r→n (γr) maps index γr in the reference sub-band,
br, to index γn in predicted sub-band, bn, using the motion
model, and Gbn and Gbr are the energy gain factors of sub-
bands bn and br, respectively. Although the last equation looks
complicated, its interpretation is simple. For each index γr
in sub-band br of frame fr, we find all the indices γn in
sub-bands S(br) of all the frames S(fr) that are predicted
(χπ(γn)n = 0) and we add their contribution, g2rn ·

Gbn
Gbr
·Ḡbr→bnW(γn)

·
(1 + θγnn ), to form θγrr . The reader can also refer to Section II
for an example, Example 2, on evaluating θγn.

During Ψw, (21) is evaluated progressively by traversing
the converse of the dependency WADG (see Figure 4b).

It is important to note that we use the same motion model
for both

←−
Wbr→bn

r→n and
−→
Wbr→bn

r→n ; only the choice of the inde-
pendent variable is different.

We discuss storage requirements and computational cost for
distortion and contribution weight estimation in Section VI.

V. ACTUAL CLIENT AND SERVER POLICIES
AND SIDE-INFORMATION DELIVERY

In this section, we discuss the actual client policy, actual
server policy, and how side-information is delivered.

A. Actual Client Policy

The loose-coupling of client and server policies, first dis-
cussed in the introduction, requires any side-information that
is sent to the client to be universal, by which we mean infor-
mation that describes some properties of the video sequence
being streamed that are always true and independent of the
state of the client-server interaction. These properties should
allow the client to make reasonably correct decisions with a
wide diversity of contents, including those where the server is
not fully aware of the client’s cache contents.

Here, we propose a client policy and a corresponding server
policy that are based on such a universal property, the per-
precinct quality layer threshold, qT,π

→n. This threshold, shown
in Figure 5, is the first quality layer at which it is better to
use received samples than to use predicted samples assuming
unquantized prediction source precincts. Specifically,

qT,π
→n = min

{
q | Dπ

∗n(qπn) < DM,π
→n
}

(22)

We remind the reader that DM,π
→n is obtained from full quality

reference frames, and as such, DM,π
→n represents the best

possible result that prediction can be expected to produce using
this prediction model. With this definition, the proposed client
policy is

Pπn =

{
Pπ∗n(qπn), qπn ≥ qT,π

→n
Pπ→n, otherwise

(23)

Obviously, the quality layer threshold is related to the
motion compensated prediction model, and therefore each
prediction model produces a different threshold. To keep
things simple in this work, we choose to limit the possible
prediction models for a given precinct to one. Thus, when
one frame is predicted from two nearby frames, as in the
case of hierarchical B-frames, the only possible predictor is
the average of these two frames; this means that we only
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TABLE I
EXAMPLE SHOWING SOURCE SUB-BANDS FOR EACH DESTINATION SUB-BAND FOR 3 DIFFERENT SIGNIFICANCE THRESHOLDS, TS , WHEN

TRANSLATIONAL MOTION MODEL IS EMPLOYED WITH CDF 9/7 IRREVERSIBLE WAVELET TRANSFORM AND 5 LEVELS OF SPATIAL DECOMPOSITION.

Destination Sub-band

d = 5 d = 4 d = 3 d = 2 d = 1 d = 0

LL HL LH HH HL LH HH HL LH HH HL LH HH HL LH HH

So
ur

ce
Su

b-
ba

nd

d = 5 LL

d = 4
HL
LH
HH

d = 3
HL
LH
HH

d = 2
HL
LH
HH

d = 1
HL
LH
HH

d = 0
HL
LH
HH

Note that , , and indicate TS of 0.25, 0.10, and 0.05, respectively, and d is the decomposition level, where d = 5 is the smallest resolution.

need one threshold for each precinct. In general, JSIV has
the flexibility to employ a wide variety of prediction models,
including position-dependent linear combinations of two or
more frames, mesh-based affine prediction models, overlapped
block-based prediction models, or even a combination of more
than one model.

B. Actual Server Policy

Server optimization is done in epochs; each epoch corre-
sponds to a fixed time step and a fixed amount of data to
be transmitted. In each epoch, p, all the frames within the
corresponding WOF have a chance of contributing data to the
transmission. It is possible that one WOF is optimized over
more than one consecutive epoch.

We write qp,πn for the number of quality layers at the end
of epoch p; we initialize q0,πn to the number of quality layers
in the client cache that the server is aware of. In order for
the client to use the data it receives from the server for a
given precinct, that data must achieve the requirements set
out in the first case of (23); that is, qp,πn ≥ qT,π

→n. This client
policy changes the distortion-length slope associated with the
first few quality layers whenever qT,π

→n > 0; in this case,
the first point in the effective distortion-length characteristics
for precinct Pπn becomes (0, D̂π

→n) and the second point
becomes (|qT,π

→n|, D̂π
∗n(qT,π

→n)) which may not belong to the
convex hull. If we denote the distortion-length slope that is
associated with the first two points on the convex hull of
the effective distortion-length characteristics by λ́π→n, then the
server’s optimization process is driven by

χπn =

{
1, qT,π

→n = 0 or λ ≤ λ́π→n
0, otherwise

(24)

This way the server policy works with the client policy to

attempt to achieve (4) by making it more favorable for the
client to use lower distortion options.

C. Quality Layer Thresholds Delivery
In practice, it is not required for the client to receive all

the quality layer thresholds, qT,π
→n, for all the precincts in

each frame; especially when limited bandwidth is available.
Therefore, we send these thresholds only for some of the
precincts, as explained next.

Many ways exist to send the quality layer thresholds to
the client, but we propose to send them as one additional
JPEG2000 image component per prediction model inside each
frame of the video sequence. This allows the use of JPIP
without any modifications for sending this information to the
client; it also allows us to benefit from features of JPEG2000
such as efficient compression, scalability, and progressive
refinement in communicating this information.

Obviously, the quality layer thresholds component is heavily
sub-sampled since there is only one threshold per precinct of
the regular image components. We use the same number of
decomposition levels and quality layers, Q, to compress the
thresholds component. In fact, even the code-block dimensions
used to compress the thresholds component are the same
as those used for original frame data, although this is not
necessary. Only one sub-band is needed to store all the
thresholds for each resolution level; in practice, we use the
HL band, leaving the LH and HH bands zero.

The thresholds are encoded using the JPEG2000 block
encoder directly. We set the number of coding passes to 3·Q−2
and encode qT,π

→n as 2Q−q
T,π
→n . The resulting code-stream is

constructed in such a way that each quality layer stores one
whole bit-plane.

Side information is delivered to the client using the standard
JPIP protocol. We send enough quality layers (or bit-planes)
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from the thresholds component such that the client is able
to deduce qT,π

→n for all the precincts that have qπn ≥ qT,π
→n;

this makes it favorable for the client to use the received
samples for these precincts. Thus, for a code-block, C, from
the quality layer thresholds component, the number of layers,
`Cn , transmitted is

`Cn = 1 + max
π∈C

{
qT,π
→n | qπn ≥ qT,π

→n
}

(25)

VI. STORAGE REQUIREMENTS AND
COMPUTATIONAL COST

Storage requirement and computational cost are related;
therefore, it is more convenient to present them together.

A. Computational Cost

We consider, here, the computation cost at the server. We
do not include the cost of motion estimation because it is not
part of the server problem; i.e., we do not perform motion
estimation for each client being served. Motion estimation is
part of the pre-processing stage as shown in Figure 1.

Here, we denote the average number of elements in A(bn)
of (17) by ATS , the average of the number of elements in
S(bn) of (20) by STS . Using approximate calculation in the
rate-distortion optimization pass, Ψo, each predicted grid block
distortion, Dγ

→n, requires approximately (ATS + 1) · |A(fn)|
multiplications and ATS · |A(fn)| additions for (19) and (3).

For the modified convex hull analysis, we need to find
D̂π
∗n(qπn) and D̂π

→n, as defined in (8) and (9), respectively;
D̂π
∗n(qπn) requires 2 · Q multiplications and 2 · Q additions

per grid block, where Q is the number of quality layers, while
D̂π
→n requires 2 multiplications and 2 additions per grid block.

For the modified convex hull analysis itself, the Incremental
Computation of Convex Hull and Slopes algorithm presented
in [24] requires no more than 2·Q multiplications per precinct.
We could reduce the computational cost associated with find-
ing D̂π

∗n(qπn) by averaging the contribution weights, θγn, in
precinct Pπn and multiplying this average by precomputed
unweighted precinct distortions, Dπ

∗n(qπn). Early termination
strategies could also be employed to further reduce computa-
tional requirements.

For Ψw, each grid block contribution weight, θγr , requires
approximately 2 · STS · |S(fn)| multiplications and 2 · STS ·
|S(fn)| additions for (21), assuming the Gbn

Gbr
terms are pre-

calculated.
It can be seen that the computational cost for a given frame

is inversely proportional to the grid block size as both of
|A(fn)| and |S(fn)| are either 1 or 2 for the prediction models
explored in Section VII, and both ATS and STS are between
4 and 7 (see Table I). Experimental results reveal that grid
blocks of 16 × 16 are sufficient; we discuss the effects of
distortion approximation and grid block size on the quality of
reconstructed video in more detail in Section VIII. Thus, for a
grid block that represents 256 samples, a computational cost of
a few tens of multiplications and additions is sufficient. This is
significantly less than doing the actual motion compensation
and then directly calculating distortions. Obviously, the com-
putational cost here is higher than that of JSIV without motion

compensation, as presented in [5], but it can be reduced to only
a few times more that that of [5]. Importantly, computational
cost grows linearly with the frame size.

B. Storage Requirements

To implement approximate distortion calculations the server
needs to keep tables of grid block quantization distortions,
Dγ
∗n(q

π(γ)
n ), for all quality layers, qπn , and grid block motion

distortions, DM,γ
→n . The server also needs to keep a table of

quality layer thresholds, qT,π
→n; there is no need to keep a table

for quality layer lengths, |qπn |, as these can be easily obtained
from code-block headers.

Representing distortions by 2 bytes is sufficient because the
inaccuracy due to the additive model of (3) is usually larger
than the inaccuracy in such a representation. Thus, 2Q + 2
bytes are needed per grid block, and one byte per precinct
for the quality layer threshold. The number of bytes needed
per grid block can be significantly reduced with a simple
compression algorithm since the higher frequency sub-bands
do not usually make any contribution in the initial quality
layers. More research is needed to find a more efficient way
of storing this data, but that is beyond the scope of this work.

VII. EXPERIMENTAL RESULTS

Three sequences8 are used in this work, the standard “Crew”
and “City” test sequences and the “Aspen” test sequence9.
Both “Crew” and “City” have 193 frames10 with a resolution
of 704×576 and a bit depth of 8 bits per sample. The “Crew”
sequence has a frame rate of 60 frames/s while “City” has
30 frames/s. “Aspen” is a 97 frame sequence11 that has a
resolution of 1920 × 102412 at 30 frames/s and a bit depth
of 8 bits per sample. Only the Y-component is used for all the
tests reported here.

For JSIV, the sequences are converted to JPEG2000 using
Kakadu13. Five levels of irreversible DWT are employed for
all the sequences. A code-block size of 32×32 and 20 quality
layers are used for all sequences. “Hierarchical” refers to a 3-
level hierarchical B-frame prediction arrangement, similar to
the SVC extension of H.264 [3] and is denoted by JSIV-H. In
the “Sequential” prediction arrangement (denoted by JSIV-S),
each frame is predicted from the frame before it; effectively an
“IPP. . . ” arrangement. In JSIV-S, the server jointly optimizes
two consecutive frames (WOF = 2) at each optimization
epoch, and then shifts the WOF by one frame. For INTRA,

8“Crew,” “City,” and “Aspen” test sequences are available at http://www.
eet.unsw.edu.au/∼taubman/sequences.htm.

9“Aspen” test sequence is owned by NTIA/ITS, an agency of the U.S.
Federal Government, and is available at ftp://vqeg.its.bldrdoc.gov/HDTV/
NTIA source/

10The original sequences are actually a little longer but only the first 193
are used. The length of 193 is selected because it is suitable for a 3-level
hierarchical B-frame prediction arrangement.

11The original sequence has 600 frames but only the first 97 were used to
reduce processing time. The length of 97 is selected because it is suitable for
a 3-level hierarchical B-frame prediction arrangement.

12The original sequence has a resolution of 1920×1080, but was cropped
due to limitations in the motion encoding implementation.

13http://www.kakadusoftware.com/, Kakadu software, version 5.2.4.
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also known as Motion-JPEG2000, each frame is independently
transmitted in an optimal fashion.

JSIV provides great flexibility in selecting motion models.
So instead of using a single model, it is possible to work
with a family of motion models, representing a variety of
trade-offs between motion quality and bit-rate, selecting an
appropriate model for each client. This work demonstrate this
flexibility with a simple example; we employ an embedded
scalable motion encoder [25], [26] to produce a block-based
motion description that contains geometry information. The
encoder employs Lagrange-style rate-distortion optimization.
At the coarsest level the block size is 64 × 64 while at
the finest level it is 8 × 8 for the hierarchical B-frames
arrangement. For the sequential arrangement, block size ranges
from 32 × 32 to 4 × 4. In each case, we have 4 possible
motion descriptions with varying degrees of quality for each
prediction arrangement. Motion compensation is performed at
1/4 pixel precision with 7-tap interpolation kernels formed
by windowing cubic splines. As mentioned before, motion
compensation is always applied to synthesized frames at the
highest available resolution.

Using an embedded scalable description of motion makes
it possible to progressively refine the motion vectors with the
availability of more bandwidth; for example, when the client
browses the same media a second or a third time. Ideally, the
motion vector quality should be related to the quality of media
being served, but this feature is not yet implemented in our
code. Therefore, we manually select one of the four possible
motion descriptions such that motion information constitutes
around 10% of the overall data rate wherever possible.

To find qT,π
→n of (22), we employ the best quality motion

vectors. This is fair since this choice matches the original
definition of qT,π

→n in that it is the first quality layer at which it
is better to use received samples than to use predicted samples
assuming unquantized prediction source precincts.

For SVC, JSVM14 is used to compress and reconstruct the
sequences. The intra-frame period is set to 8 to match that
of JSIV. All the scenarios presented here employ three levels
of temporal decimation with two enhancement layers. The
enhancement layers use two levels of medium-grain scalability
(MGS) between them, giving a total of seven quality layers.
No spatial scalability options are used for these tests; these
would penalize the SVC performance somewhat.

All results are reported in PSNR calculated from the av-
erage MSE over the reconstructed sequence. All JSIV results
reported use the policies of Section V with 3 passes of ΨwΨo

for the hierarchical B-frame prediction arrangement and 2
for the sequential. The results presented here are obtained
using approximate distortion calculations with 4 × 4 grid
block dimensions and a significance threshold, TS , of 0.05.
The rates reported include all encoded sub-band samples,
JPEG2000 headers, side information, motion information, and
JPIP message header overhead. The only missing overhead is
the one associated with motion information delivery; this is
because we have not yet encapsulated motion information in

14JSVM version 9.19.7 obtained through CVS from its repository at
garcon.ient.rwth-aachen.de

a manner directly suitable for JPIP delivery.
We compare JSIV with SVC because it is considered to be

the state of the art compressor with support for scalability.
The results presented here are biased in favor of SVC, since
they do not account for the communication overhead needed to
stream SVC, e.g., using RTP. By contrast, JSIV results include
all overhead associated with the highly flexible JPIP protocol.

We start by comparing JSIV performance against that of
SVC and INTRA. Figures 8, 9, and 10 show the PSNR for
the “Crew,” “City,” and “Aspen” sequences, respectively. It can
be seen that both JSIV and SVC perform better than INTRA.
SVC performs better than JSIV in the case of “Crew” and
“City” while JSIV-H performs comparably or slightly better
than SVC for the “Aspen” sequence. The good performance of
JSIV-H for the “Aspen” sequence is due to the effectiveness of
the motion compensation for that sequence and the fact that the
“Apsen” sequence has large smooth regions (regions with very
little high-frequency content). For such regions, JSIV sends
nothing or very little from high-frequency sub-bands while
SVC needs to send the many macro-blocks in these regions.

In general, JSIV performs better for high-resolution se-
quences because 32 × 32 code-blocks provide better accessi-
bility at these resolutions; when a certain region of a predicted
frame needs to be updated (such as when the motion model
fails), a 32 × 32 code-block represents a small region in a
high-resolution frame while it represents a very substantial
portion of the frame for low-resolution sequences (the whole
LL sub-band can be one code-block).

It is important to remember that JSIV is a relatively new
concept whereas predictive video coding research has pro-
duced a lot of ideas in the last three decades that significantly
improved the quality of reconstructed video. For example,
JSIV currently uses fixed scaling factors grn of 0.5 in (1)
to mix forward and backward prediction terms together in
the hierarchical B-frame arrangement, as opposed to position-
dependent scaling factors applied to reference frames in SVC.
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Fig. 8. A comparison of the performance of various schemes for the “Crew”
sequence.

It can also be seen that the performance of JSIV-H is
better than JSIV-S. This can be explained by the fact that the
hierarchical arrangement produces better predictors compared
to sequential.

Other than motion information, the overheads associated
with these test sequences are usually less than 10%; motion
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Fig. 9. A comparison of the performance of various schemes for the “City”
sequence.
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Fig. 10. A comparison of the performance of various schemes for the “Aspen”
sequence. Note that the x-axis is in (kb/frame).

information, on the other hand, can be a significant portion of
the overall data rate, mainly because the available four motion
descriptions are not sufficient to cover the wide range of data
rates we are employing (for example, from 1 Mb/s to 20Mb/s).
Table II shows the overheads associated with the sequential
prediction arrangement of the “City” sequence, measured
against the overall rate, where side-information refers to
the quality layer thresholds. Table III shows the overheads
associated with the hierarchical B-frame arrangement of the
“Aspen” sequence.

TABLE II
OVERHEADS IN JSIV FOR THE “CITY” SEQUENCE IN SEQUENTIAL

ARRANGEMENT AS A PERCENTAGE OF THE OVERALL RATE.

Rate JPIP Side JPIP for Side Motion
(Mb/s) Information Information Information

1.151 0.348% 4.404% 0.270% 12.041%
2.073 0.431% 2.941% 0.182% 9.726%
4.718 0.866% 1.489% 0.084% 5.053%
6.251 1.035% 1.228% 0.051% 3.814%
9.469 1.023% 0.867% 0.040% 2.518%

19.738 0.706% 0.508% 0.021% 1.051%

Examining the overheads reveals that the percentage of
motion information decreases with the increase in data rate;
this is partially due to the increase in data information, but,
more importantly, is also due to the increased dependence on

TABLE III
OVERHEADS IN JSIV FOR THE “ASPEN” SEQUENCE IN HIERARCHICAL
B-FRAMES ARRANGEMENT AS A PERCENTAGE OF THE OVERALL RATE.

Rate JPIP Side JPIP for Side Motion
(kb/frame) Information Information Information

18.446 2.091% 7.932% 0.663% 23.597%
41.973 1.851% 4.638% 0.379% 10.370%
68.814 1.850% 3.528% 0.230% 7.859%

172.658 1.565% 1.792% 0.091% 3.132%
376.730 1.361% 0.880% 0.039% 1.406%
749.935 1.172% 0.454% 0.020% 0.022%

directly decoded precincts at higher rates. As more precincts
become directly decoded, as opposed to predicted, motion
information becomes irrelevant and can be safely discarded.
The results also suggest that more research is needed to
produce an embedded motion model that can support a wide
range of data rates; such a model can perhaps improve JSIV
results.

Next, we consider the effect of using different code-block
sizes on the quality of reconstructed video. Figure 11 and Fig-
ure 12 show the PSNR for the “Crew” and “City” sequences,
respectively, when the hierarchical B-frame arrangement is
used. It can be seen that code-block dimensions of 32 × 32
provide the best compromise between accessibility and coding
efficiency. This result is, to a large extent, similar to the result
obtained for the case of JSIV without motion compensation
[5].

In our earlier work [5], we demonstrated the efficacy of
JSIV without motion compensation under several usage sce-
narios. These included: individual frame retrieval; spatial and
temporal scalability; window of interest; and the use of client-
cached data in improving received data. All of these scenarios
can also be employed in JSIV with motion compensation;
however, we choose not to repeat the same experiments here.
Instead, we choose two new scenarios to demonstrate the
flexibility of JSIV.
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Fig. 11. The effect of code-block size on the quality of reconstructed video
for the “Crew” sequence with hierarchical B-frame arrangement.

The first scenario involves a client that already has a better
motion model than the model currently being delivered by
the server, possibly from an earlier browsing session; these
models are from the same embedded motion model that is
mentioned earlier. For this case, the client can use its better
motion model to obtain a higher quality reconstructed video;
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Fig. 12. The effect of code-block size on the quality of reconstructed video
for the “City” sequence with hierarchical B-frame arrangement.

the client has the finest available description with blocks of
4 × 4 while the server is delivering the coarsest available
description with blocks of 32 × 32. Figure 13 shows the
PSNR of reconstructed video with these two different motion
model qualities, but for the same encoded sub-band samples
from the first 10 frames of the “Aspen” sequence, using the
sequential prediction arrangement. It can be seen that the
availability of a better motion description improves the quality
of reconstructed video. It is important to note that this is
not possible with traditional predictive coding because side
information is tightly-coupled to the motion residues.

We have demonstrated in [5] that it is possible for a client
to benefit from receiving new data even if the server is not
aware of the client’s cache contents. Such a scenario is also
applicable when motion compensation is employed; however,
we choose not to repeat it here. The scenario we present here
shows how a server that is aware of the client’s cache contents
can use this knowledge to improve reconstructed video quality
when the client revisits the same part of the video a second and
third time by augmenting the client’s cache contents. Figure
14 shows the PSNR of reconstructed video after the first,
second, and third visit to the first 10 frames of the “Aspen”
sequence with a sequential prediction arrangement, starting
from the first frame each time. The data rate allocated for
each frame in each pass is around 10.5 kBytes. It can be seen
that the availability of higher quality sub-band samples greatly
improves the quality of reconstructed video. This scenario
is not currently available with traditional predictive coding
techniques but an SVC server can be modified to operate in
such a scenario.

VIII. IMPACT OF DISTORTION APPROXIMATIONS ON
THE QUALITY OF RECONSTRUCTED VIDEO

In order to achieve a realistic implementation of JSIV, we
have introduced a few approximations; in this section, we
investigate the effects of these approximations on the quality
of reconstructed video. We also study the effect of using our
actual client and server policies instead of oracle policies.

We introduced approximate distortion estimation (referred
to here as APPROX) in Section IV to reduce the computational
cost associated with exact distortion calculations (referred
to here as EXACT). Experimental results from Tables IV
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Fig. 13. A demonstration of the flexibility of JSIV. A client can immediately
utilize the availability of better motion vectors in improving the quality of
reconstructed video. The figure shows the PSNR for the first 10 frames of the
“Aspen” sequence; “Sequential” prediction arrangement is used here.
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Fig. 14. A demonstration of the flexibility of JSIV. A client that browses the
same section of a video will progressively get improved quality. The figure
shows the PSNR for the first 10 frames of the “Aspen” sequence. “Sequential”
prediction arrangement is used here. Each frame receives around 10.5 kBytes
at each browsing session.

and V for the headings EXACT and APPROX show that the
degradation in reconstructed video quality is more for the
sequential prediction arrangement than that for the hierarchical
arrangement; this is true at low bit rates for both test sequences
investigated here, where video reconstruction is more depen-
dent on prediction compared to higher bit rates. We attribute
this degradation to the accumulation of errors that happens
when there are multiple consecutive predictions (a frame is
predicted from a frame that is itself predicted and so on);
multiple predictions occur in the sequential arrangement more
than in the hierarchical which can at most have 3 consecutive
predictions. This impact becomes smaller as the data rate
increases since the client and server policies become less
dependent on prediction with the increase in data rate; thus, the
impact of distortion approximations becomes more acceptable
at the practical PSNR region15 with a maximum loss of around
0.6 dB.

Comparing these results to the case of JSIV without motion
compensation presented in [5], we see that the inaccurate
assumption of uncorrelated motion distortion has a lower
impact when motion compensation is used because motion
compensation tends to make motion distortion smaller; more-

15A video sequence with a PSNR of less than 33dB is considered of very
poor quality.
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TABLE IV
A COMPARISON BETWEEN DIFFERENT POLICIES FOR THE “CITY” SEQUENCE.

INTRA Sequential Hierarchical B-frames

Ratea Oracle Policy Actual Policy Oracle Policy Actual Policy

(Mb/s) EXACT APPROX EXACT APPROX EXACT APPROX EXACT APPROX

1 26.24 29.15 26.91 27.31 26.78 30.53 30.54 30.57 30.58
2 28.22 30.95 29.63 30.67 29.85 32.99 33.01 32.99 33.01
4 30.94 33.04 32.38 32.99 32.52 34.71 34.69 34.71 34.69
8 34.81 35.89 35.61 35.88 35.67 36.89 36.84 36.89 36.84

12 37.86 38.10 37.98 38.10 37.99 38.83 38.80 38.83 38.80
16 40.46 40.52 40.51 40.52 40.51 40.66 40.64 40.66 40.64

a To provide a fair comparison, all results reported here are for encoded sub-band samples and motion information only; they
exclude any headers, JPIP, and policy overhead.

TABLE V
A COMPARISON BETWEEN DIFFERENT POLICIES FOR THE “ASPEN” SEQUENCE.

INTRA Sequential Hierarchical B-frames

Ratea Oracle Policy Actual Policy Oracle Policy Actual Policy

(kb/frame) EXACT APPROX EXACT APPROX EXACT APPROX EXACT APPROX

20 28.55 31.23 30.73 30.75 30.63 31.69 31.67 31.69 31.68
40 30.74 33.18 32.59 32.85 32.68 34.12 34.02 34.11 34.05
80 33.44 35.58 34.96 35.46 35.26 36.14 36.01 36.12 36.06

160 36.53 37.80 37.34 37.78 37.55 38.53 38.38 38.51 38.42
320 39.87 40.25 40.02 40.23 40.04 40.59 40.47 40.58 40.49
480 41.82 41.85 41.82 41.85 41.82 41.91 41.85 41.90 41.86
640 43.02 43.00 42.99 43.00 42.99 42.97 42.94 42.97 42.95

a To provide a fair comparison, all results reported here are for encoded sub-band samples and motion information only; they
exclude any headers, JPIP, and policy overhead.

over, it mixes inaccurate motion distortion estimates with
the more reliable quantization distortion values. Consider for
example grid block G1k of Figure 4a; its distortion estimate
combines reliable quantization distortions (from G4j ) with a
less reliable combination of distortions (from G2j ).

Two parameters affect the approximation quality: the grid
block size and the significance threshold. Smaller grid blocks
and significance thresholds produce more accurate distortion
estimates but increase the computational cost. The grid block
size has a large impact on the computational cost, and therefore
it is a good idea to maximize it. Experimental results for
the sequential prediction arrangement of the “City” sequence
show that a grid block size of 32× 32 reduces the quality of
reconstructed video by up to 0.5 dB while a size of 16 × 16
incurs a loss of at most 0.1 dB. The impact of grid block
size is smaller for the hierarchical prediction arrangement of
the “City” sequence and for both prediction arrangements of
the “Aspen” test sequence. Based on these observations, we
recommend a grid block size of 16× 16.

The significance threshold factor has a rather low impact on
the computational cost, but it is still a good idea to maximize
it. For the sequential arrangement, experimental results reveal
that increasing TS from 0.05 to 0.1 has little effect on the
quality of reconstructed video; however, increasing TS from
0.1 to 0.25 can reduce the quality of reconstructed video by up
to 1.5 dB at low bit-rates while having little effect at high bit-
rates. For the hierarchical prediction arrangement, this effect
is smaller. Based on these results, we recommend keeping TS
at or below 0.1.

Finally, we explore the effect of using actual client and
server policies instead of oracle ones. Experimental results,
shown in Tables IV and V under the “EXACT” heading,
reveal that the PSNR difference between the oracle and actual
policies is small in the practical PSNR region; this is true for
both prediction arrangements of both test sequences, “City”
and “Aspen”. We conclude that our proposed client and server
policies provide at least close to the best performance that
can be practically achieved, noting that the oracle policies
represent an unachievable upper bound on performance.

IX. CONCLUSION AND FUTURE WORK

In this work, we have demonstrated the efficacy of JSIV
when motion compensation is employed. In general, the use of
motion compensation improves prediction whenever the actual
underlying motion can be modeled reasonably well; other-
wise, JSIV effectively reverts back to intra-coded video. A
hierarchical B-frame arrangement provides better exploitation
of temporal redundancy compared to sequential arrangement;
however, the same content can be simultaneously served to
clients with different prediction strategies (e.g. to satisfy delay
constraints). The computational cost of distortion estimation
can be made reasonable through the use of appropriate ap-
proximations, allowing the server to perform rate-distortion
optimization in real-time. Storing side information as meta-
images allows the use of the standard JPIP protocol to send
this information as well as streaming the video itself.

JSIV, with or without motion compensation, provides con-
siderably better interactivity compared to existing streaming
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schemes. This improved interactivity comes from not com-
mitting to a predetermined prediction policy. This allows the
server to dynamically and adaptively change its policy to track
a client’s needs. The use of loosely-coupled policies makes it
possible for the client and the server to work independently,
which is especially beneficial for cases where the server
cannot immediately be aware of the client’s cache contents.
Performance-wise, JSIV is comparable or slightly inferior
to existing schemes in certain scenarios while performing
better in those which are interactive in nature, such as video
conferencing and remote browsing of videos.

This work is part of an ongoing investigation in this
area. Future work includes improved prediction and a real-
time prototype implementation of the JSIV client and server
applications.
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