
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 2007 1

JPEG2000-Based Scalable Interactive Video (JSIV)
Aous Thabit Naman, Member, IEEE, and David Taubman, Senior Member, IEEE

Abstract—We propose a novel paradigm for interactive video
streaming and we coin the term JPEG2000-Based Scalable
Interactive Video (JSIV) for it. JSIV utilizes JPEG2000 to
independently compress the original video sequence frames and
provide for quality and spatial resolution scalability. To exploit
inter-frame redundancy, JSIV utilizes prediction and conditional
replenishment of code-blocks aided by a server policy that
optimally selects the number of quality layer for each code-block
transmitted and a client policy that makes most of the received
(distorted) frames. It is also possible for JSIV to employ motion
compensation; however, we leave this topic to future work. To
optimally solve the server transmission problem, a Lagrangian-
style rate-distortion optimization procedure is employed. In JSIV,
a wide variety of frame prediction arrangements can be employed
including hierarchical B-frames of the scalable video coding
(SVC) extension of the H.264/AVC standard. JSIV provides
considerably better interactivity compared to existing schemes
and can adapt immediately to interactive changes in client
interests, such as forward or backward playback and zooming
into individual frames. Experimental results for surveillance
footage, which does not suffer from the absence of motion
compensation, show that JSIV’s performance is comparable to
that of SVC in some usage scenarios while JSIV performs better
in others.

Index Terms—Teleconferencing, video signal processing, image
coding, image communication, weighted acyclic directed graphs.

I. INTRODUCTION

TRADITIONAL video compression techniques, such as
MPEG-1 through MPEG-4 and H.261 through H.264,

have focused mainly on minimizing the amount of data for
a given video quality while offering limited interactivity; for
example, temporal random access is usually limited to a
predetermined set of points1 and random access to an arbitrary
spatial region is not supported. Limited interactivity and a
diversity of client needs have motivated research in the field
of scalable video coding.

Scalable video coding can solve some of the existing prob-
lems in video storage and streaming as it can accommodate the
varying needs of different clients from one base source file;
it can also dynamically adapt to available network bandwidth,
gracefully degrading the streamed video quality. Research in
this area has produced some promising results [1], [2] and re-
cently a scalable video coding (SVC) extension to H.264/AVC
[3] has been approved within the ISO working group known
as MPEG, to provide improved scalability options.

Even with these improved options, an encoded video for a
certain application is not suitable for a different application.

Copyright c©2010 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org

1There exist an I-only profile in which temporal access is available to all
frames.

For example, an encoded video using I-only frames can
provide direct temporal access to each of its frames; however,
it is mainly suitable for high bit rate applications as it does not
exploit temporal redundancy. To achieve higher compression
ratio (e.g., for video streaming applications over networks
with limited bandwidth), the encoder must exploit temporal
redundancy, which imposes restrictions on the encoded stream
that limit temporal accessibility; for example, if a client is
interested in one frame only, the server has to send enough
data from the group of pictures (GOP) that contains this frame,
possibly the whole GOP, and the client has to reconstruct
potentially a large number of frames in order to invert the
motion compensated transform used during compression and
extract the desired frame. More examples are given in the
following paragraphs.

For still images, the JPEG2000 Interactive Protocol (JPIP)
[4], [5] provides many of the desirable features of scalable
interactive browsing. These include resolution scalability, pro-
gressive refinement (or quality scalability), spatial random
access, and highly efficient compression. JPIP also supports
interactive browsing of Motion-JPEG20002, although we note
that Motion-JPEG2000 content does not involve any exploita-
tion of inter-frame redundancy.

This work proposes JPEG2000-Based Scalable Interactive
Video (JSIV) as a way of providing better flexibility, scalabil-
ity, and interactivity options for video streaming compared to
existing practices. JSIV relies on:

• JPEG2000 to independently compress the individual
frames of the video sequence and provide for quality and
spatial resolution scalability as well as random accessi-
bility.

• Prediction, with or without motion compensation, and
conditional replenishment of JPEG2000 code-blocks to
exploit temporal redundancy.

• Loosely-coupled server and client policies. The server
policy aims to select the best number of quality layers
for each precinct it serves and the client policy attempts
to produce the best possible reconstructed frames from
the data the client has. Each of these policies may
evolve separately without breaking the communication
paradigm.

In our preliminary work [7]–[11], we have demonstrated the
efficacy of JSIV with motion compensation. In this more rigor-
ous treatment, however, it is convenient to restrict our attention
to the case of prediction without motion compensation. This
restriction allows us to focus on JSIV concepts, avoiding un-
necessary complications in this introductory work; moreover,

2Motion-JPEG2000 [6] is a video file format based on JPEG2000. The
file contains some video timing information, and each frame is stored
independently in its own code-stream.

2 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 2007

certain applications (e.g., surveillance) can benefit consider-
ably from JSIV even in the absence of motion compensation.
In a later paper, we will explore motion compensated JSIV in
greater depth.

Before discussing the simplified block diagram of a JSIV
system shown in Figure 1, we find it useful to discuss the
underlying philosophy behind JSIV. As mentioned above, JSIV
relies on loosely-coupled client and server policies. The philos-
ophy behind JSIV is that the client should not explicitly drive
the server’s behavior (e.g., it should not request the delivery
of specific code-block bit-streams) and the server should not
explicitly drive the client’s behavior (e.g. it should not tell
the client how to synthesize each frame from the delivered
content). Instead, the client poses high level requests to the
server (e.g., region of interest, playback resolution/frame-rate,
etc.) and the server replies with portions of code-block bit-
streams which it believes to be helpful in satisfying the client’s
declared interests.

We postulate that if both the client and the server are
intelligent enough to make reasonable decisions, then the
decisions made by the server are likely to have the expected
impact on the decisions made by the client. For example,
if the server sends a reasonable amount of data from a
particular code-block bit-stream, judging this to be beneficial
to the client, then a reasonable client policy is likely to use
the supplied bit-stream rather than predict the code-block
in question from neighboring frames. The server may send
additional side information to help the client resolve highly
ambiguous situations3, but this side information should be
expressed in a form which is independent of the state of the
client-server interaction so that it describes properties of the
source which are always true.

There are many advantages to such an approach. One
example is when the client has some data that the server is
unaware of; for example, the client might have obtained that
data from a previous browsing session or from a different
server or possibly a proxy. In this case the client uses its
knowledge of the stream and its properties to consider both its
cache content and the newly received data in order to select
the options that, it believes, achieve the best possible quality.
There is no need to worry about drifting between the client
state and the server state, since the client makes its decisions
based on properties of the stream which are always true; we
demonstrate this in an example in Section VII. Other examples
arise in the case where a client has less data than the server
expects, for example due to data loss. For such cases, the client
uses the knowledge it has about the stream and its properties
to conceal any missing data.

We move our attention to the simplified block diagram
of a JSIV system depicted Figure 1; the system has three
basic entities: the preprocessing stage, the server, and the
client. The preprocessing stage is responsible for compressing
each frame individually into JPEG2000 format and preparing
side-information for these frames. The side information can
include distortion-length slope tables, motion distortions, and

3For example, in the absence of any data for some code-block, it is not at all
clear whether the client should synthesize the frame using zeros or predicted
samples for that code-block.

any other side information that might be required during media
serving. Side-information can either be generated off-line for
pre-recorded media or in real-time for live media. Many of
these operations are independent of each other and can be
easily delegated to one or more machines in a content delivery
network.

The server is composed of two main sub-blocks: the client
distortion estimation block (CDEB) and the rate-distortion
optimization block (RDOB). The CDEB attempts to model
distortions in each code-block or each precinct of each frame,
based on its knowledge about transmitted information and
an assumed client policy. This model can also be adapted
to reflect knowledge of network conditions, client browsing
preferences and client browsing cache. It is sufficient for this
block to generate approximate estimates of distortions, and
therefore it does not have to actually reconstruct the client’s
view.

The RDOB performs Lagrangian-style rate-distortion opti-
mization to decide the number of quality layers to be sent for
each precinct of each frame, which can be zero. It also decides
on any side-information needed by the client to best exploit
the frame data. All the decisions made by the RDOB take into
consideration the estimated distortion provided by the CDEB.

The server communicates with the client employing only
JPIP [4], [5]; JSIV stores side-information in additional
components in each frame, conceptually known as meta-
components or meta-images. This allows the use of JPIP
without any modifications to send both code-block data and
side-information.

The client receives compressed code-block bit-streams and
side information. Using this information and aided by a client
policy, the client selects the source of data to use for each
code-block. In particular, the client has the option to decode
an available code-block bit-stream directly or to predict the
code-block from nearby frames (possibly having much higher
quality).

The flexibility and accessibility of JSIV is the result of not
committing to any predetermined temporal prediction policy.
Thus, the server is free to change its policy on the fly and
during serve time to respond to changes in client requirements
or network conditions; for example, the server can switch from
the hierarchical B-frame prediction arrangement to optimizing
each frame independently from other frames. The decision to
choose a particular prediction arrangement can depend on the
amount of data loss on the network (the absence of inter-frame
dependency makes the sequence more loss-resilient).

JSIV departs from traditional predictive coding schemes
in that side-information in JSIV is only a guide that helps
the client make sound decisions while in traditional video
compression schemes it totally dictates the client prediction
modes, prediction reference frames, and any other client
operation modes. Also, JSIV always sends intra-coded frame
pieces and never uses residual data. The use of actual data
instead of residual data incurs an encoding loss, but at the same
time enables the client to make decisions independently of the
server and avoid the possibility of drift between server and
client states. This independence enables the client to use its
cache more effectively and possibly use information obtained

NAMAN AND TAUBMAN: JPEG2000-BASED SCALABLE INTERACTIVE VIDEO (JSIV) 3

Preprocessing

Video
Content

Pr
ep

ro
ce

ss
in

g
St

ag
e

JP
E

G
20

00
C

om
pr

es
si

on
So

ur
ce

St
at

is
tic

s
E

st
im

at
io

n

Server

Code-blocks

Side-information

Optimal Selection
of Code-blocks

Side-information

Server
Policy

Client
Policy

Cache
Model

Code-block
Selection

Client
CacheClient Distortion

Estimation

Rate-Distortion Optimization

JP
IP

Client

Code-block
Selection

Client
Cache

2D-DWT
Synthesis Reconstructed Video

Client
Policy

Cache
Model

High-Level
Requests

Fig. 1. A simplified block diagram of the proposed JSIV delivery system. The client distortion estimation block, shown in gray, estimates client-side
distortions in reconstructed frames without reconstructing them.

from other servers or proxies.

Many researchers have realized the limited interactivity pro-
vided by the existing techniques [12]–[17], and have devised
different approaches that are favorable in certain situations.

Cheung and Ortega [12], [13] propose flexible video de-
coding that provides forward and backward playback for
traditional and multi-view sequences. Their proposed system
is similar to JSIV in that the server provides multiple possible
predictors and let the client choose the best predictor at
decode time; unlike the approach proposed here, theirs is
based on distributed video coding. Another work that at-
tempts to improve interactivity is by Mavlankar et al. [17].
In that work, they propose a way of dynamically providing
pan, tilt, and zoom features in video playback to different
clients with varying regions of interest [17]. The proposed
method breaks a high resolution video into tiles and streams
them simultaneously using H.264 compression and employing
some peer-to-peer delivery techniques. They also investigate
limited scalability by simultaneously broadcasting two or more
streams, with dyadically-spaced spatial resolution. JSIV shares
these capabilities and can also provide temporal scalability and
quality-optimized region of interest.

Another recent work by Devaux et al. [15] that was
published around the same time we introduced JSIV [7]
investigates a problem that is similar to JSIV in some aspects;
however, they stopped short of investigating the flexibility that
such a paradigm can provide. For example, the interaction
between the client and the server is totally dictated by the
server policy with a simple client that is incapable of making
its own decisions; moreover, prediction is only possible from
the last received frame with no motion compensation. JSIV can
employ prediction with or without motion compensation from
any frame within the window of the frames being optimized,
and can refine previously transmitted frames whenever that is
favorable. They extended their work in [16] by employing
LPDC to generate parity bits that can potentially improve
lightly-distorted predictors. JSIV can also improve prediction
as was demonstrated in [11], [18]. The techniques proposed in
our work, however, utilizes the client’s knowledge about the
quantization bins or intervals of received samples in improving

prediction.

Some concepts in JSIV are adapted from a recent work on
interactive browsing of 3D scenes, which has shown promising
results [14]. JSIV concepts were introduced progressively by
the authors in [7]–[11], [18]; in this work, we elaborate
on these concepts and formalize them. In [7], we examined
a realistic implementation; however, inter-frame redundancy
is exploited only within disjoint pairs of frames. In [8],
the server optimization policy was extended to a sliding
window of sequential frames, with the potential to exploit
the redundancy between any two frames within the window.
In [9], the server optimization policy was extended to a
hierarchical group of frames, similar to the hierarchical B-
frame dyadic prediction structure used by the SVC extension
of H.264/AVC. In [10], we proposed a method for approximate
distortion estimation rather than reconstructing the video to
calculate real distortions. In [11], we introduced a client
capable of improving prediction by exploiting its knowledge
about quantization bins of the received samples. This client is
served by a server that can take advantage of this capability
in a realistic implementation context. In [18], we proposed a
method to improve prediction by exploiting the quantization
intervals of received samples in selecting a more favorable
predictor in hierarchical B-frame arrangement without motion
compensation. We also demonstrated how the client and server
policies can evolve independently with little or no impact on
the quality of reconstructed video.

Remote browsing of high-resolution surveillance video is
one application where JSIV can provide an improved browsing
experience compared to current video coding standards. Usu-
ally for such video sequences, most of the changes happen in
certain regions, and the background occupies a good percent-
age of the frames, with little or no changes. For such a case,
JSIV works better than conventional JPIP since it effectively
reduces to an optimized conditional replenishment scheme
while JPIP by itself needs to transmit the full content of each
frame. In a typical browsing scenario, a remote client browsing
surveillance footage usually can monitor a low-resolution
version of the whole scene, as this provides the interactive user
with sufficient details to identify any regions of interest. To

4 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 2007

have a more detailed look at any of these interesting regions,
the interactive user changes his or her window of interest to
that region, and starts monitoring it. For monitoring a window
of interest JSIV works favorably compared to existing coding
standards, as these do not support retrieval of an arbitrary
window from the encoded video sequence. Other advantages of
JSIV for surveillance video browsing over existing paradigms
include the capability of backward playback, reduced temporal
rate playback, and lossless retrieval of frames or regions of
interest in frames.

We consider here some of the other benefits of JSIV. For
lossy transmission environments, the server does not need to
retransmit lost packets, instead it can adapt by adjusting its
delivery policy for future frames alone. Both the client and the
server can easily and dynamically change from video playback
mode to individual frame browsing mode and any data in the
client cache is readily available for the reconstruction of indi-
vidual frames. For clients with limited processing capabilities,
the server can adapt its policy by reducing frame rate, reducing
resolution, or by focusing on the client’s window of interest.

The rest of this work is organized as follows. Section II
gives a brief overview of the data organization in JPEG2000
code-streams. Sections III and IV describe “oracle” client
and server policies that enable us to discuss the basic JSIV
optimization algorithm. Section V gives actual client and
server policies. In Section VI, we discuss the amount of
computations required to deploy JSIV, and we propose a way
of significantly reducing it. Section VII gives experimental
results spanning many of the interesting use cases mentioned
above, and Section VIII states our conclusion and points to
future work.

II. JPEG2000 CODE-STREAM ORGANIZATION

JSIV uses JPEG2000 to store individual frames. For this
reason, we find it very important to review the code-stream
organization of JPEG2000.

JPEG2000 employs the Discrete Wavelet Transform (DWT);
D stages of DWT, labeled d = 1, 2, . . . , D, decompose a
frame, fn, into 3 ·D+ 1 sub-bands, labeled HLd, LHd, HHd,
and LLD. Each sub-band is partitioned into rectangular blocks,
known as code-blocks. Each code-block is denoted by Cβn ,
where β is the code-block index and n is the index of the
frame to which code-block Cβn belongs. Each code-block Cβn
is independently encoded into a finely embedded bit-stream
using a fractional bit-plane arithmetic encoder. We say that
a sub-band belongs to resolution LLd if it contributes to
the reconstruction of that resolution, and not to LLd+1. So,
resolution LLD has only one sub-band, while each of the other
resolutions has three sub-bands, HLd+1, LHd+1, and HHd+1.

Although code-blocks are coded independently, they are not
explicitly identified within the code-stream. They are collected
into larger groupings known as precincts. Each precinct is
denoted by Pπn , where π is the precinct index and n is
the index of the frame to which precinct Pπn belongs. Each
precinct, Pπn , groups code-blocks that contribute to the same
spatial region of a single resolution LLd from HLd+1, LHd+1,
and HHd+1 when d < D, or from LLD when d = D. For

image browsing/streaming applications it is preferable that the
JPEG2000 stream is made up of precincts that have only one
code-block from each of their constituent sub-bands since this
minimizes the spatial impact of a precinct.

Each precinct is represented as a collection of packets, with
one packet for each quality layer, qπn . A complete JPEG2000
code-stream consists of a concatenated list of packets, together
with special marker segments which are used principally to
signal coding parameters. The standard supports a variety
of different packet ordering conventions, including layer-
oriented, resolution-oriented, and spatially-oriented sequences.

JPEG2000 arranges quality layers by employing the Em-
bedded Block Coding with Optimized Truncation (EBCOT)
algorithm [19]. During the block coding phase, each coding
pass of the fractional bit-plane encoder adds data to the
embedded bit stream, and thus each coding pass has an
associated length and distortion contribution. These coding
passes undergo convex hull analysis where suitable truncation
points, hm, are identified such that their distortion-length
slopes, Sm, given by

Sm =

D∗(h

m−1)−D∗(hm)

|hm| − |hm−1|
m = 1, 2, . . . ,H

∞ m = 0

(1)

decrease monotonically with m; here, |hm| and D∗(h
m) are

the length and distortion of the mth suitable truncation point.
Each of the Q quality layers, qπn = 1, 2, . . . , Q, is formed by

including incremental contributions of |hmq | − |hmq−1 | code
bytes from each code-block within Pπn , where m0 = 0, and

mq = max{m | Sm ≥ Tq} (2)

The distortion-length slope thresholds Tq are selected during
compression so as to achieve suitably spaced layer bit-rate or
quality increments, and are usually fixed for the whole image.

III. ORACLE CLIENT POLICY

The client policy presented here is termed an “oracle” policy
because of the unrealistic underlying assumption that the client
can make distortion-based decisions correctly, without actually
receiving any information about distortion.

For each code-block, Cβn , of each frame, fn, the client
receives zero or more quality layers, qβn . Consequently, the
de-quantized samples of a code-block, Cβ∗n(qβn), have an as-
sociated distortion given by Dβ

∗n(qβn) = ‖Cβ∗n(qβn) − C̊βn‖2,
where C̊βn are the full quality code-block samples. For frame
reconstruction, the client can also use predicted samples, Cβ→n;
in general, the prediction reference samples of Cβ→n also suffer
from quantization distortion. The techniques and sources used
in obtaining these predicted samples depend on the policies
employed by the client and the server.

In general, the distortion associated with predicted samples,
Dβ
→n, can be approximated by a combination of motion dis-

tortion, DM,β
→n , due to motion or other inter-frame changes and

quantization distortion, DQ,β
→n, due to quantization in prediction

NAMAN AND TAUBMAN: JPEG2000-BASED SCALABLE INTERACTIVE VIDEO (JSIV) 5

reference samples. That is,

Dβ
→n = ‖Cβ→n − C̊βn‖2

= 2 ·
〈
C̊β→n − C̊βn , Cβ→n − C̊β→n

〉
+ ‖C̊β→n − C̊βn‖2︸ ︷︷ ︸

DM,β
→n

+ ‖Cβ→n − C̊β→n‖2︸ ︷︷ ︸
DQ,β
→n

≈ DM,β
→n +DQ,β

→n (3)

where C̊β→n is the predictor obtained from full quality reference
samples. We assume that motion and quantization errors are
likely to be uncorrelated in practice, allowing us to ignore
the cross term. This assumption is supported by experimental
results as shown in Section VI.

To improve prediction, it is very common to use some
position-dependent linear combination of more than one refer-
ence frame. This technique is widely employed in the MPEG1
to MPEG4 standards. Here, we write A(fn) for the set of
reference frames that directly contributes to fn’s prediction,
and we employ a linear combination given by

f→n =
∑

r3fr∈A(fn)

grn · fr (4)

We choose to use position-independent scaling factors, grn, in
this work; that is, we fix grn for a given prediction arrangement
as is highlighted in Section VII. Space-varying scaling factors,
however, can be readily incorporated into the approach.

In view of (4), predicted samples, Cβ→n, are given by

Cβ→n =
∑

r3Cβr ∈A(Cβn)

grn · Cβr→n (5)

where Cβr→n are the samples predicted from Cβr of frame fr,
and (3) becomes

Dβ
→n ≈ DM,β

→n +
∑

r3Cβr ∈A(Cβn)

g2rn ·DQ,β
r→n (6)

This approximation relies upon the same condition as (3);
moreover, (6) requires that quantization distortions among
the different reference frames in A(fn) be uncorrelated, a
commonly employed approximation in the literature.

Using an additive model, precinct distortions, Dπ
n , can be

approximated by

Dπ
n =

∑
β3Cβ⊂Pπ

Gbβ ·Dβ
n (7)

where Gbβ is the energy gain of sub-band b to which
code-block β belongs. Similar approximations can thus be
written for Dπ

∗n(qπn) and Dπ
→n. These approximations are

valid provided that the wavelet transform basis functions are
orthogonal or the quantization errors in each of the samples are
uncorrelated. Neither of these requirements is strictly satisfied;
however, the wavelet kernels used in our experimental investi-
gations in Section VII have nearly orthogonal basis functions.

Ideally, the client chooses the samples that produce lower
distortion; that is,

Dπ
n(qπn) = min {Dπ

∗n(qπn), Dπ
→n} (8)

This simple client policy is unrealistic as the client has no
access to the actual media and therefore is incapable of
calculating distortions, especially for Dπ

→n; this policy will be
revised to one which does not require explicit knowledge of
distortions in Section V. Although it is possible for the client
to make decisions on a code-block basis rather than on the
level of precincts, we choose to work with precincts because
the smallest piece a server can send in JPIP is one layer of
one precinct (formally known as a packet). This means that
the server transmits precinct-optimized data.

IV. ORACLE SERVER POLICY

The server policy presented here is termed an “oracle”
policy because of the unrealistic underlying assumption that
the client can make distortion-based decisions that correctly
reflect the server’s intentions without the server sending any
information about distortions to the client.

At a JSIV server, rate-distortion optimization is performed
over windows of frames. Each frame within the window of
frames (WOF) being optimized has a chance of contributing
data to the interactive session. We refrain from using the term
group of pictures (GOP) to describe these frames since WOF
refers to the frames being optimized regardless of their pre-
diction arrangement. We solve the rate-distortion optimization
problem for a WOF, Fs, by utilizing the generalized Lagrange
multiplier method [20]; this involves recasting the problem as
the minimization of a Lagrangian cost functional, Jλ, given
by

Jλ =
∑
n∈Fs

∑
π∈fn

(Dπ
n + λ · |qπn |) (9)

where |qπn | is the number of bytes in qπn quality layers, and λ
is a Lagrangian parameter that is adjusted until the solution
which minimizes Jλ satisfies some length constraint.

The minimization of Jλ involves selecting the number of
quality layers, qπn , for each precinct, Pπn , in Fs, as well as
deciding which precincts are predicted, Dπ

→n, and which are
directly decoded (i.e. decoded independently), Dπ

∗n. We denote
the state of a precinct by χπn with χπn = 0 for a predicted
precinct and χπn = 1 for a directly decoded precinct. This
way, (9) can be written as

Jλ =
∑
n∈Fs

∑
χπn=0
π∈fn

Dπ
→n+

∑
n∈Fs

∑
χπn=1
π∈fn

Dπ
∗n(qπn)+λ·

∑
n∈Fs

∑
χπn=1
π∈fn

|qπn |

(10)
Direct minimization of this functional is difficult because of
the interdependency between predicted precincts and their
predictors. For example, the decision to make precinct Pπk
of Figure 2 predicted, χπk = 0, depends on the quality of
its predictor, Pπi , but the quality of Pπi depends to some
extent on χπk ; when Pπi is used as a prediction reference
precinct, its distortion affects multiple precincts, which results
in the assignment of more bytes (higher quality) to Pπi in the
Lagrangian optimization.

This is essentially a dependent bit allocation problem. A
few researcher worked on similar problems; in particular, we
mention [21]–[23]. By adapting some concepts from [21], it is
possible to develop a trellis-based approach to the optimization

6 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 2007

Pπi

Pπk

Pπn

gik

gkn

Pπj

gjk

Pπm

gmn

Fig. 2. A WADG, D, showing prediction relationship among various
precincts with their corresponding scaling factors. The gray part of the graph
is for possible precincts that are not used during discussions.

Pπ1

Dπ1
=

Dπ∗1

Pπ2

Dπ→2
=

Dπ∗1
+

DM,π
→2

Pπ3

Dπ→3
=

Dπ∗1
+

DM,π
→2

+

DM,π
→3

Pπ4

Dπ→4
=

Dπ∗1
+

DM,π
→2

+

DM,π
→3

+

DM,π
→4

Pπ5

Dπ→5
=

Dπ∗1
+

DM,π
→2

+

DM,π
→3

+

DM,π
→4

+

DM,π
→5

Fig. 3. An illustrative example showing how distortion propagates from one
precinct to other precincts. The figure shows five precincts, each from one
frame, that are indexed by the same π for a WOF composed of 5 consecutive
frames. Pπ1 is a reference precinct while each of the other precincts is
predicted from the precinct before it as indicated by the arrows. Underneath
each precinct, we show the distortion contribution of that precinct. The gray
area is the contribution of the distortion in precinct Pπ3 to the other precincts
in the WOF.

of JSIV without motion compensation; however, such an
approach becomes highly complex when motion compensation
is employed, even with distortion modeling. When motion
compensation is employed, the distortion in a given precinct in
a reference frame propagates, in general, to multiple precincts
in each predicted frame; details about distortion propagation
can be found in [24] and [25]. Therefore, we find it more
convenient to present an alternate approach that is useful for
both JSIV with and without motion compensation.

In this proposed approach, we use of an additive distortion
model (an extension of (6)) to simplify (10), together with an
iterative approach that attempts to reduce the cost functional
in each iteration. The iterative approach is composed of two
passes. The first pass evaluates an additional contribution
weight, θπn , for each precinct in the WOF; this weight accounts
for the additional distortion that a precinct contributes to the
WOF when it is used as a prediction reference precinct. The
second pass performs rate-distortion optimization for each
precinct in the WOF to incrementally optimize both χπn and
qπn .

For the additive distortion model, beside the assumptions
made in (6), we also assume that motion distortion between
one precinct and another is uncorrelated with motion distortion

between any other pair of precincts. Although the validity
of this approximation is questionable, it is necessary for
guaranteed convergence of the two-pass iterative approach as
well as providing significant simplifications. We have more to
say about this in Section VI.

Figure 3 shows an application of this additive distortion
model; here, each precinct, Pπn , is predicted from the precinct
before it, Pπn−1, except for Pπ1 which is directly decoded. The
distortion in Pπ1 is Dπ

∗1; using the additive distortion model,
the distortions in Pπ2 is Dπ

∗1 +DM,π
→2 , in Pπ3 is Dπ

∗1 +DM,π
→2 +

DM,π
→3 , and so on. Thus, the effective distortion contribution of

precinct Pπ1 to the WOF containing the five precincts shown
in Figure 3 is (1 + θπ1) ·Dπ

∗1, where θπ1 = 4. Ultimately, the
distortion contribution of these five precincts to the WOF can
be written as (1 + θπ1) ·Dπ

∗1 +
∑5
j=2(1 + θπj) ·DM,π

→j , where
θπ2 = 3, θπ3 = 2, θπ4 = 1, and θπ5 = 0.

Utilizing this additive distortion model in (10) and rearrang-
ing, we get

Jλ =
∑
n∈Fs

∑
χπn=0
π∈fn

(1 + θπn) ·DM,π
→n

+
∑
n∈Fs

∑
χπn=1
π∈fn

(1 + θπn) ·Dπ
∗n(qπn) + λ ·

∑
n∈Fs

∑
χπn=1
π∈fn

|qπn |

(11)

Before discussing the details of the two-pass iterative ap-
proach, we find it useful to discuss some concepts from
directed graphs [26]. It is obvious that prediction, with or
without motion compensation, creates dependency among the
frames of one WOF, Fs. This dependency can be repre-
sented by a weighted acyclic directed graph (WADG) [26];
see Figure 2 for an example. The nodes of the graph, also
called vertices, can represent frames, precincts, or code-blocks
depending on the context. The links between these nodes,
called arcs, are directional links starting from a reference frame
and ending in a predicted frame. It is weighted because these
arcs have a scaling factor associated with them as in (4). A
WADG is a weighted directed graph with no cycles; that is,
if fm is contributing to fn’s prediction, then there is no way,
direct or indirect, that fn is contributing to fm’s prediction.
The set of vertices denoted by A(fn) as in (4) are known
as the in-neighbors while the set of frames that are directly
predicted from frame fn are known as out-neighbors and are
denoted by S(fn). Next, we discuss the two passes.

1) Contribution Weight Pass, Ψw: In Ψw, the additional
contribution weights, θπn , are calculated so that (11) correctly
represents (10) so long as {χπn}π and {qπn}π values remain
constant. The weights are updated based on the values of
{χπn}π that are obtained from the last rate-distortion optimiza-
tion pass, Ψo, or from initial conditions. This is achieved
by visiting all the frames within the WOF in the acyclic
ordering4 of the converse5 of the dependency WADG, D∗.

4It is always possible to arrange the vertices of a WADG in what is called
acyclic ordering [26]. In such an ordering, each vertex is positioned after all
its reference vertices and before any of its dependent vertices.

5For every WADG, D, there is a converse WADG denoted by D∗, which
is obtained by reversing all the arcs of D [26].

NAMAN AND TAUBMAN: JPEG2000-BASED SCALABLE INTERACTIVE VIDEO (JSIV) 7

For each precinct in such a frame, the value of θπn can be
easily determined from (10) and (11) and is given by

θπn =
∑
χπj =0

j3Pπj ∈S(P
π
n)

g2nj · (1 + θπj) (12)

This order guarantees that predicted frames are visited before
their reference frames and thus reference frames’ contribution
to predicted frames is accounted for before visiting these
reference frames. In practice, we initialize all {χπn}π to 1;
therefore, the first value θπn takes is 0.

2) Rate-Distortion Optimization Pass, Ψo: This is the pass
where the actual rate-distortion optimization is performed. In
Ψo, the values of {χπn}π and {qπn}π are changed in a way that
minimizes the cost functional of (11) while {θπn}π values are
kept constant.

Consider the cost contribution of Pπ3 to the cost functional,
Jλ, for the WOF containing the five precincts shown in
Figure 3. The decision to make Pπ3 predicted (χπ3 = 0) has a
cost contribution of (1 + θπ3) · (Dπ

∗1 +DM,π
→2 +DM,π

→3), where
θπ3 = 2; this cost contribution, which is shown with a gray
background in Figure 3, is equivalent to (1 + θπ3) · Dπ

→3.
Similarly, we can deduce that the cost contribution of making
Pπ3 directly decoded (χπ3 = 1) is (1+θπ3) ·Dπ

∗3+λ · |qπ3 |, since
Dπ

3 equals to Dπ
∗3 instead of Dπ

→3 in this case. We conclude
that a precinct’s contribution to the cost functional of (11), is

Jπn,λ =

{
(1 + θπn) ·Dπ

→n, χπn = 0

(1 + θπn) ·Dπ
∗n(qπn) + λ · |qπn |, χπn = 1

(13)

The Ψo pass involves visiting each frame, fn, in the WOF,
Fs, in the acyclic ordering of the WADG, D. For each
precinct, Pπn , in each visited frame, we first update Dπ

→n
to its latest value then we choose χπn and qπn that produce
the lowest Jπn,λ. The frame visiting order guarantees that a
given frame is processed after its reference frames. This way,
we can calculate Dπ

→n for all the precincts in a given frame
before minimizing Jπn,λ for these precincts. Changes to {χπn}π
during Ψo necessitate another Ψw to update {θπn}π so that
(11) correctly models (10). Thus, multiple iterations of ΨwΨo

might be needed to achieve the lowest possible cost functional
using this method. This iterative process converges when a Ψo

pass does not change any of the {χπn}π .
Convergence of this two-pass iterative approach can be

shown as follows. Ψw is not part of the rate-distortion opti-
mization; it only updates {θπn}π so that (11) correctly models
(10). Ψo either reduces the cost functional Jπn,λ for a given
precinct or leaves it unchanged. The decisions made for a given
precinct, Pπn , during Ψo achieve the desired outcome since
they are based on correct Dπ

→n and θπn at the time that precinct
is visited; Dπ

→n depends on precincts that have already been
optimized during this Ψo and θπn depends on precincts that are
yet to be visited so that their associated χπk values have not
been changed since θπn was computed. Since there must exist a
minimum for Jλ and each step of Ψo monotonically reduces
Jλ, the process must converge to some minimum albeit not
necessarily to a global one.

If actual distortions are used instead of the additive distor-
tion model of (11), convergence is not guaranteed; in fact,

D
is

to
rt

io
n
D

Length |qπn |

The Convex Hull of Pπn

χπn = 1

λπn(1)

λπn(2)

λπn(3)

λπn(4)

Dπ∗n(0)

λ π→
n

Dπ→n

χπn = 0

DM,π
→n qT,π

→n = 2

Fig. 4. A typical distortion-length convex hull for a precinct Pπn , where each
large white circle () represents one quality layer. Also shown in the figure
is the distortion associated with the predicted version of the precinct, Dπ→n,
when Dπ→n < Dπ∗n(0); the small black circles () represent the modified
convex hull.

it can be shown that it does not converge under certain
conditions. Despite this, experimental results show that ΨwΨo

iterations help in reducing the cost functional even when actual
distortions are used.

Next, we give a graphical interpretation and a corresponding
solution to (13). Figure 4 depicts a typical rate-distortion curve
for a precinct, Pπn . It can be easily shown that this curve
is a convex since each precinct is made up of convex-by-
construction code-blocks using (2). We write λπn(q) for the
distortion-length slope associated with the quality layers, qπn ;
that is,

λπn(q) =
Dπ
∗n(q − 1)−Dπ

∗n(q)

|q| − |q − 1|
(14)

The figure also shows Dπ
→n for the case of Dπ

→n < Dπ
∗n(0).

The existence of a predicted version of the precinct, Pπ→n,
with distortion Dπ

→n creates a new distortion-length convex
hull. Thus, the distortion-length slopes associated with the first
few layers change to λπ→n. With this in mind, the complete
solution to the minimization of (13) is

χπn =

{
1, Dπ

→n > Dπ
∗n(0) or λ ≤ λ̂π→n

0, otherwise
(15)

qπn =

{
max{q | λ̂πn(q) > λ}, λ ≤ λ̂π→n
0, otherwise

(16)

where λ̂πn(q) = (1 + θπn) · λπn(q) and λ̂π→n = (1 + θπn) · λπ→n.

V. ACTUAL CLIENT AND SERVER POLICIES

For the samples of a given precinct, the ultimate objective
of the client policy is to achieve (8) by correctly selecting
between received samples and predicted samples, possibly
from more than one predictor. A good realistic policy should
at least be capable of making correct decisions when the
difference between the available choices is significant. The
main difficulty that faces the client here is how to compare
the quality of possibly many candidate precinct samples in
order to select the best candidate.

8 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 2007

The loose-coupling of client and server policies, first dis-
cussed in the introduction, requires any side information that
is sent to the client to be universal, by which we mean infor-
mation that describes some properties of the video sequence
being streamed that are always true and independent of the
state of the client-server interaction. These properties should
allow the client to make reasonably correct decisions under
diverse client cache contents.

Here, we propose a client policy and a corresponding server
policy that are based on such a universal property, the per-
precinct quality layer threshold, qT,π

→n. This threshold, shown
in Figure 4, is the first quality layer at which it is better to
use received samples than to use predicted samples assuming
unquantized prediction source precincts. Specifically,

qT,π
→n = min

{
q | Dπ

∗n(qπn) < DM,π
→n
}

(17)

We remind the reader that DM,π
→n is obtained from full quality

reference frames, and as such, DM,π
→n represents the best

possible result that prediction can produce using this prediction
model.

Obviously, this quality layer threshold is related to the pre-
diction model, and therefore each prediction model produces
a different threshold. To keep things simple in this work, we
choose to limit the possible prediction models for a given
precinct to one. Thus, when one frame is predicted from two
nearby frames, as in the case of hierarchical B-frames, the only
possible predictor is the average of these two frames (that is,
we fix grn to 1

2); this also limits the number of thresholds
associated with each precinct to one. The efficacy of JSIV
when more than one predictor is available have already been
demonstrated in our earlier work [8], [18].

Besides using the quality layer threshold, the client policy
uses a heuristic to address the fact that reference frames are
generally quantized. We write qπR,n for the number of quality
layers in the actual reference precinct used in predicting Pπn ;
such a reference precinct could be separated from Pπn by many
frames each with its own Dπ

k distortions. Thus, each precinct
has its own qπR,n and both the client and the server keep track
of these values. It is possible that a given precinct is predicted
from many precincts using the precinct version of (5); in this
case, qπR,n is obtained from

qπR,n =

∑

r3Pπr ∈A(Pπn)

grn · qπR,r

 (18)

where d·e is the ceiling function. Although this approximation
is questionable due to the non-linear relation between distor-
tion and number of layers, we find it suitable for the heuristic
describe here. With this definition, the complete client policy
is

Pπn =

{
Pπ∗n(qπn), qπn ≥ qT,π

→n or qπn ≥ q̂πR,n
Pπ→n, otherwise

(19)

where q̂πR,n = max{qπR,n − 1, 1}.
The heuristic is explained as follows. If the client receives a

number of quality layers equal to the threshold or more, qπn ≥
qT,π
→n, for a given precinct, then the distortion associated with

these received samples is smaller than any predicted samples,

in view of (17) and the additive distortion model of (11). If
the client receives fewer quality layers than the threshold for
a given precinct, then it uses the received samples so long as
it has at least q̂πR,n layers. The advantage of using q̂πR,n rather
than qπR,n is to allow for graceful degradation in quality over
time, while still using transmitted data.

This heuristic is motivated by the practical observation that
the condition qπn ≥ qT,π

→n proves problematic at low data rates
when the actual reference precinct lies outside the WOF being
optimized. Under these conditions the optimization algorithm
cannot increase the prediction reference quality, but also
cannot usefully send fewer than qT,π

→n layers for any precinct
inside the WOF.

In practice, it is not required for the client to receive all
the quality layer thresholds, qT,π

→n, for all the precincts in
each frame; especially when a limited bandwidth is available.
Therefore, we send these thresholds for some of the precincts
as explained next.

Many ways exist to send the quality layer thresholds to
the client, but we propose sending them as one additional
JPEG2000 image component per prediction model inside each
frame of the video sequence. This choice allows the use of
JPIP without any modifications for sending this information
to the client. It also allows us to benefit from the features
of JPEG2000 such as efficient compression, scalability, and
progressive refinement in communicating this information.

Obviously, the quality layer thresholds component is heavily
sub-sampled since there is only one threshold per precinct
of the regular image components. We use the same number
of decomposition levels, quality layers, Q, and, although not
necessary, the same code-block dimensions as those of the
original frame. Only one sub-band is needed to store all the
thresholds for each resolution level; in practice, we use the
HL band leaving the LH and HH bands zero.

The thresholds are encoded using the JPEG2000 block
encoder directly. We set the number of coding passes to
3 · Q − 2, and encode qT,π

→n as 2Q−q
T,π
→n . The resulting code-

stream is constructed in such a way that each quality layer
stores one whole bit-plane.

Side information is delivered to the client using the standard
JPIP protocol. We send enough quality layers (or bit-planes)
from the thresholds component such that the client is able to
deduce qT,π

→n for all the precincts that have qπn ≥ qT,π
→n; this is

to make sure the the client uses the received samples for these
precincts. It is pointless to send the threshold for precincts
that have qπn < qT,π

→n since the client’s decision totally depends
on qπR,n in this case. Thus, for a code-block, C, from the
quality layer thresholds component, the number of layers, `Cn ,
transmitted is

`Cn = max
π∈C

{
1 + qT,π

→n | qπn ≥ qT,π
→n
}

(20)

The progressive refinement property of the JPEG2000 format
is useful in progressively sending bit-planes (or layers) from
the quality layer thresholds component when the need arises.
For example, at low bit rate, the server optimization policy
selects and sends only a small number of quality layers for the
frames of the video sequence, and therefore it is sufficient to

NAMAN AND TAUBMAN: JPEG2000-BASED SCALABLE INTERACTIVE VIDEO (JSIV) 9

send a small number of layers from the quality layer thresholds
component, as given by (20). As the bit rate increases, the
server sends more layers for the frames; consequently, it
needs to send more layers from the quality layers thresholds
component (send the higher qT,π

→n values).
We turn our attention to the server policy. Server optimiza-

tion is done in epochs; each epoch corresponds to a fixed
time step and a fixed amount of data to be transmitted. In
each epoch, p, all the frames within the corresponding window
of frames (WOF) have a chance of contributing data to the
transmission. It is possible that one WOF is optimized over
more than one consecutive epoch.

In order for the client to use the data it receives from
the server for a given precinct, that data must achieve the
requirements set out in the first case of (19). Taking note
of that, during the rate-distortion optimization pass, Ψo, the
number of quality layers in epoch p, qp,πn , can be determined
from

qp,πn =

max

q≥qp−1,π
n

qπn≥q
T,π
→n or qπn≥q̂

π
R,n

{
q | λ̂πn(q) > λ

}
, λ 6 λ̂π→n

0, otherwise
(21)

This way the server policy works with the client policy to
attempt to achieve (8) by making it more favorable to the client
to use lower distortion options.

Alternate client and server policies can be obtained by
using a pre-determined minimum-quality reference frames for
the definition of the quality layer threshold, (17), rather than
using full-quality reference frames. We choose not pursue
this option here because, with the current definition of the
threshold, (17), it is clear that directly decoded samples are
better than predicted samples when the client has qT,π

→n or more
quality layers for the precinct in question. With the alternate
definition, however, it is possible that predicted samples (with
high quality reference frames) are better than directly decoded
samples even if the client receives more than the alternate
threshold. More importantly, experimental results, shown in
Tables I and II under EXACT, reveal that the actual policies
presented in this work cause almost no degradation in the
quality of reconstructed video compared to the oracle policies
of Sections III and IV, which represent an unachievable upper
bound on performance. More details about the test sequences
and the exact meanings of “Sequential” and “Hierarchical” are
available in Section VII.

To achieve a desired rate, a simple rate-control loop is
employed. It starts by selecting a value for λ which is used for
the ΨwΨo iterations. If the resultant rate for that λ is far-off of
the desired rate, another value of λ is selected and the process
is repeated until an acceptable resultant rate is achieved. A
simple bisection method is employed to find a suitable λ and
the side-information overhead is accounted for inside the rate-
control loop.

An interesting observation concerning the JSIV optimization
algorithm presented here is that it does not generally produce
embedded data streams; that is, the optimal representation at a
given rate is not necessarily embedded in a higher-rate optimal
representation. The lack of embedding has implications for

λ rate
(unit2/byte) (bytes)

8000
13 0
0 0

P 0
0 0

199

7000
12 0
0 0

13 0
0 0

344

Fig. 5. Lack of embedding in JSIV. The first row shows two frames, f1 and
f2, of 60×60 pixel resolution compressed using JPEG2000 with 32×32 pixel
code-blocks and 20 quality layers. The squares in the middle of the second and
third rows represent the number of quality layers inside each code-block of
the DWT decomposition of each frame; each square is one code-block. The
code-blocks belong to the LL1, HL1, LH1, and HH1 sub-bands, arranged
from left to right, top to bottom. “P” indicates prediction.

streaming applications in that it requires each epoch to finish
its optimization passes before sending any data for that epoch.
An embedded stream, on the other hand, can be easily adapted
to any desired data rate by simply truncating it at that rate.

We demonstrate this lack of embedding in an example; in
this example we show how slightly changing the Lagrange pa-
rameter, λ, changes the selected precincts in a non-embedded
way. A test sequence of two frames, f1 and f2, with a
resolution of 60 × 60 is compressed using JPEG2000 with
32× 32 pixel code-blocks and 20 quality layers; these frames
are shown in the first row of Figure 5. These two frames
are jointly optimized subject to the condition that the second
frame can be predicted from the first frame. For a Lagrange
parameter, λ, of 8000 the LL1 sub-band of f1 has 13 quality
layers while HL1, LH1, and HH1 sub-bands have zero quality
layers. The second frame, f2, does not receive any data, and
its LL1 sub-band is predicted from that of f1, indicated by
“P”. For a Lagrange parameter, λ, of 7000 the LL1 sub-band
of f1 has 12 quality layers while the LL1 sub-band of f2 has
13 quality layers. This clearly demonstrates that at a higher λ
(lower rate) the optimization algorithm makes a selection that
is not embedded in the lower λ (higher rate) selection. The
reason behind this is that at the higher λ (lower rate), θπn of
the LL1 band of f1 is equal to 1; whereas for lower λ (higher
rate), it is equal to 0.

VI. DISTORTION ESTIMATION
AND IMPLEMENTATION COST

In our treatment so far, Dπ
→n is obtained in the server by

directly calculating ‖Cβ→n − C̊βn‖2 for all of the code-blocks
in that precinct and then employing (7). We refer to this
method as EXACT calculations. In the following paragraphs,
we introduce an approach based on approximate distortion
calculation, which significantly reduces computation in the
server.

Consider Figure 2 where Pπk is predicted from Pπi with a
scaling factor of gik. We can utilize (3), or its more general
form given by (6), to approximate the distortion in Pπk without
actually calculating it. For the server to be able to approximate
this and similar frame arrangements, it must keep tables of dis-
tortions, Dπ

∗n(qπn), associated with all quality layers, for each

10 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 2007

TABLE I
A COMPARISON BETWEEN DIFFERENT POLICIES FOR THE “SPEEDWAY” SEQUENCE.

INTRA Sequential Hierarchical B-frames

Ratea Oracle Policy Actual Policy Oracle Policy Actual Policy

(kb/s) EXACT APPEMD APPROX EXACT APPROX EXACT APPROX EXACT APPROX

125 25.06 32.80 32.66 30.50 32.72 30.95 32.15 32.23 32.16 32.22
250 27.68 34.91 34.73 32.73 34.89 33.06 34.95 34.98 34.95 34.98
500 30.37 37.18 37.13 35.20 37.21 35.44 37.89 37.87 37.89 37.87

1000 33.27 39.77 39.41 38.02 39.82 38.09 40.82 40.81 40.82 40.81
2000 36.97 41.97 41.59 40.76 41.97 40.78 43.14 43.03 43.14 43.03

a To provide a fair comparison, all results reported here are for encoded sub-band samples; they exclude any headers, JPIP, and policy
overhead.

TABLE II
A COMPARISON BETWEEN DIFFERENT POLICIES FOR THE “PROFESSOR” SEQUENCE.

INTRA Sequential Hierarchical B-frames

Ratea Oracle Policy Actual Policy Oracle Policy Actual Policy

(kb/frame) EXACT APPEMD APPROX EXACT APPROX EXACT APPROX EXACT APPROX

40 29.97 34.43 34.22 34.19 34.43 34.27 33.56 33.58 33.56 33.58
80 32.24 37.59 37.39 37.05 37.58 37.17 36.56 36.60 36.55 36.60

160 35.07 40.54 40.47 39.58 40.56 39.69 39.79 39.76 39.78 39.76
240 36.90 42.29 41.93 41.00 42.34 41.07 41.61 41.56 41.61 41.56
320 38.21 43.29 42.85 41.92 43.34 42.05 42.78 42.72 42.80 42.72

a To provide a fair comparison, all results reported here are for encoded sub-band samples; they exclude any headers, JPIP, and policy overhead.

precinct of each frame. It must also keep tables for motion
distortions, DM,π

→n , and their associated quality layer thresholds,
qT,π
→n, for all the needed prediction arrangements and perceived

playback modes. It is sufficient to keep approximate quantized
distortion values, and therefore 2 bytes per entry is more than
enough. There is no need to keep tables for the quality layer
sizes, |qπn |, as these can be easily extracted from code-block
headers.

Thus, for each precinct6, which usually represents a few
thousand samples, we need 2 · Q bytes to store Dπ

∗n(qπn),
where Q is the number of quality layers, and 3 bytes for each
predictor to store DM,π

→n and qT,π
→n. Only some of the qT,π

→n values
are transmitted to the client, as given by (20); Dπ

∗n(qπn) and
DM,π
→n are used by the server only to estimate distortions (i.e.,

they are not transmitted).
Next, we investigate the validity of the assumptions we

made in (6) and (11). Consider the case of Pπn in Figure 2;
it is predicted from Pπk that is itself predicted from Pπi . One
approximation, which we refer to as approximate with exact
motion distortion (APPEMD), is to always use exact motion
distortion; that is,

Dπ
→n ≈ g2ik · g2kn ·Dπ

∗i +DM,π
i→n (22)

In APPEMD, a reference precinct can occur many frames
earlier then the current WOF. We impose a limit on the number
of possible reference frames and force a high distortion for
prediction sources that are outside this limit. The server policy
in this case will replace precincts from frames that are outside

6In interactive applications, code-blocks are usually 32× 32 samples. This
gives 2924 precincts in each 4K cinema frame (4096 × 2160 pixels) when
6 levels of DWT are used, and 45 precincts in each CIF frame (352× 288)
pixels when 4 levels of DWT are used.

the available reference frames with ones from the current
WOF. The limit used, however, is quite large and therefore
does not have a measurable impact on the result. Experimental
data, shown in Tables I and II under APPEMD, shows only a
small degradation in the quality of reconstructed video, less
than 0.5dB in the worst case. This supports the earlier claim
that quantization distortion and motion distortion are mostly
uncorrelated as is assumed in (6).

The other approximation, which we refer to as approximate
(APPROX), is used in deriving (11) and is based on the assump-
tion that motion error between Pπi and Pπk is uncorrelated with
the motion error between Pπk and Pπn , and therefore we can
approximate Pπn ’s distortion by

Dπ
→n ≈ g2kn ·Dπ

→k +DM,π
k→n

≈ g2kn · (g2ik ·Dπ
∗i +DM,π

i→k) +DM,π
k→n (23)

Experimental data, shown in Tables I and II under APPROX,
shows that there is almost no degradation in the quality of
reconstructed video in the case of a hierarchical B-frame
prediction arrangement. However, there can be as much as
2dB quality in the case of a sequential prediction arrangement.
This suggests that the assumption of uncorrelated motion
distortion is not very accurate, especially over an extended
sequence of consecutive frames. We believe that it maybe
worth sacrificing this reduction in quality, especially when
the advantage of JSIV is consistently more than a few dB
relative to regular intra-coded video. The main advantages
of APPROX are significant storage savings, since APPEMD
requires significantly more tables, improved data locality, and
lower computational requirements through recursive distortion
estimation. Of course, intermediate approaches can be con-
ceived in which exact motion distortions are stored for some

NAMAN AND TAUBMAN: JPEG2000-BASED SCALABLE INTERACTIVE VIDEO (JSIV) 11

but not all prediction scenarios.
We turn our attention to the computational requirements of

our proposed approach. Using APPROX in the rate-distortion
optimization pass, Ψo, to find Dπ

→n from (6) requires |A(Pπn)|
additions and |A(Pπn)| multiplications per precinct where
|A(Pπn)| is the number of elements in A(Pπn). To imple-
ment (18), we need |A(Pπn)| − 1 additions and |A(Pπn)|
multiplications per precinct. For the modified convex hull
analysis, the Incremental Computation of Convex Hull and
Slopes algorithm presented in [27] requires no more than
2 ·Q multiplications, where Q is the number of quality layers.
Early termination can also be employed to further reduce
computational requirements. For Ψw, finding θπn from (12)
requires 2 · |S(Pπn)|−1 additions and |S(Pπn)| multiplications
per precinct.

The computational requirements grow linearly with frame
size since the number of precincts does so. Obviously, the
computational requirements per precinct are small, being on
the order of 10 to 20 multiplications and additions where a
precinct typically represents several thousand video samples.

VII. EXPERIMENTAL RESULTS AND USAGE SCENARIOS

In this section we visit a few of the usage scenarios
introduced in Section I; we show how JSIV can provide more
efficient access to the media than existing approaches. We
use two sequences7: “Speedway” and “Professor”. These two
sequences are chosen because they are surveillance footage
and therefore are more suitable for this paper than the standard
motion test sequences. The effectiveness of JSIV with standard
test sequences have been demonstrated in our earlier work
[7]–[11] where JSIV with motion compensation is employed.
“Speedway” is a 193 frame sequence8 that has a resolution of
352×288 at 30 frames/s and a bit depth of 8 bits per sample.
“Professor” is a 97 frame sequence that has a resolution of
3008× 2000 captured at one frame every approximately three
seconds at a bit depth of 8 bits per sample. Only the Y-
component is used for all the tests reported here.

For JSIV, these sequences are converted to JPEG2000 using
Kakadu9. Three levels of irreversible DWT are employed for
“Speedway” and five for “Professor”. A code-block size of
32 × 32 and 20 quality layers are used for both sequences.
“Hierarchical” refers to Hierarchical B-frame prediction ar-
rangement, similar to the SVC extension of H.264 [3]; all grn
values are fixed to 1

2 in this case. “Sequential”, on the other
hand, refers to arranging the frames such that the WOF = 2;
the WOF shifts by one frame after each epoch, and each frame
can only be predicted from the frame before it (effectively an
“IPP. . . ” arrangement). For the sequential arrangement, we
have f→n = fn−1; that is, grn is fixed to 1. All the re-
sults reported here use the “Hierarchical” arrangement except
Figures 8 and 9, which uses the “Sequential” arrangement.
It is important to remember that JSIV never sends residues.

7“Speedway” and “Professor” test sequences are available at http://www.
eet.unsw.edu.au/∼taubman/sequences.htm.

8It is actually 200 frames but the last 7 frames were dropped to make it more
suitable for use with a 3-level hierarchical B-frame prediction arrangement.

9http://www.kakadusoftware.com/, Kakadu software, version 5.2.4.

For INTRA, also known as Motion-JPEG2000, each frame is
independently transmitted in an optimal fashion.

For SVC, JSVM10 is used to compress and reconstruct these
sequences. The intra-frame period is set to 8 to match that of
JSIV. All the scenarios presented here, except for the scal-
ability scenario, employ three levels of temporal decimation
with two enhancement layers. The enhancement layers use
two levels of medium-grain scalability (MGS) between them,
giving a total of seven quality layers. No spatial scalability
option was used for these test; increasing the number of
MGS and/or adding spatial scalability would penalize SVC’s
performance.

One of the difficulties faced with SVC is the amount of
parameters that need to be configured. We started with default
options, and we activated all the options that we think improve
the coding efficiency such as adaptive inter-layer prediction
and context-adaptive binary arithmetic coding (CABAC).

All results are reported in PSNR calculated from the av-
erage MSE over the reconstructed sequence. All JSIV results
reported use actual policies with 3 passes of ΨwΨo for the
hierarchical B-frame prediction arrangement and 2 for the
sequential. The rates reported include everything: encoded
sub-band samples, JPEG2000 headers, side-information, and
JPIP message header overhead.

We compare against SVC because it is considered to be
the state of the art compressor with support for scalability.
It is important to note that it might be possible to create an
SVC-compressed sequence that performs better than JSIV for
a given usage scenario, but it is not possible to create an
SVC-compressed sequence that performs better than JSIV in
all the usage scenarios. The results presented here are biased
towards SVC since they do not account for the communication
overhead needed to stream SVC, for example from RTP. By
contrast, JSIV results include all overhead associated with the
highly flexible JPIP protocol.

We start by comparing JSIV performance against that
of SVC and INTRA. Figure 6 shows the results for the
“Speedway” sequence and Figure 7 shows the result for
the “Professor” sequence; in both case, JSIV employs the
“Hierarchical” arrangement.

0 500 1,000 1,500 2,000

26

28

30

32

34

36

38

40

42

Rate (kb/s)

PS
N

R
(d

B
)

JSIV

SVC

INTRA

Fig. 6. A comparison of the performance of various schemes for the
“Speedway” sequence.

10JSVM version 9.18.1 obtained through CVS from its repository at
garcon.ient.rwth-aachen.de

12 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 2007

0 100 200 300 400

26

28

30

32

34

36

38

40

42

Rate (kb/frame)

PS
N

R
(d

B
)

JSIV
SVC
INTRA

Fig. 7. A comparison of the performance of various schemes for the
“Professor” sequence. Note that the x-axis is in (kb/frame).

TABLE III
OVERHEADS IN JSIV FOR THE “PROFESSOR” SEQUENCE

IN HIERARCHICAL B-FRAME ARRANGEMENT
AS A PERCENTAGE OF THE OVERALL RATE.

Rate JPIP Side JPIP for Side
(kb/frame) Information Information

49.488 3.305% 4.567% 0.294%
97.819 3.106% 2.770% 0.151%

192.681 2.740% 1.840% 0.082%
283.261 2.403% 1.407% 0.057%
375.028 2.265% 1.200% 0.043%

It can be observed that JSIV, in general, works considerably
better than INTRA. Compared to SVC, JSIV works worse
for the “Speedway” sequence and better for the “Professor”
sequence. The interested reader can refer to [25] for a couple
of reconstructed frames from these sequences.

The overheads for hierarchical B-frame prediction arrange-
ment for the “Professor” sequence are shown in Table III,
measured against the overall rate. It can be seen that for
this arrangement the overhead from JPIP is less than 4% and
from side-information is less than 5%. This overhead becomes
smaller with increasing data rate. Similar results are obtained
for the sequential frame arrangement.

Figures 8 and 9 show the effect of code-block sizes
on the quality of the reconstructed video in JSIV for the
“Speedway” and “Professor” sequences, respectively, for the
sequential frame arrangement; similar results are obtained for
the hierarchical B-frame arrangement. The code-block size
represents a trade-off between accessibility and compactness
of representation; for example, a small block size makes
it easier for the server to replace precincts and therefore
provides better accessibility at the expense of reduced coding
efficiency and increased overhead. It can be seen that the
optimal code-block size is 16×16 for “Speedway” and 32×32
for “Professor”. This difference is expected since the smaller
block size provides better interactivity for the lower resolution
“Speedway” sequence.

A. Individual Frame Retrieval

During an interactive browsing session it is normal for the
client to be interested in one frame only; perhaps because
that frame shows some event or incident. In a conventional

0 500 1,000 1,500 2,000 2,500
30

32

34

36

38

40

Rate (kb/s)

PS
N

R
(d

B
)

16× 16

32× 32

64× 64

Fig. 8. The effect of code-block size on quality for the “Speedway” sequence
when the sequential prediction arrangement is employed.

0 100 200 300 400 500
32

34

36

38

40

42

Rate (kb/frame)

PS
N

R
(d

B
)

16× 16

32× 32

64× 64

Fig. 9. The effect of code-block size on quality for the “Professor” sequence
when the sequential prediction arrangement is employed. Note that the x-axis
is in (kb/frame).

predictive coding scheme, the retrieval of a particular frame
requires, in general, the retrieval of all of its reference frames,
their reference frames, and so on. The number of frames that
need to be retrieved depends on the frame arrangement and the
position of that particular frame. In JSIV, on the other hand,
it is possible to retrieve an individual frame directly.

Figure 10 shows the retrieval of frames 12 and 13 of the
“Professor” sequence for both JSIV and SVC cases. For the
case of SVC, the rates shown are the sum of the rates for
frames 9, 11, 12, 13, and 17 for the case of frame 12; and
frames 9, 13, and 17 for the case of frame 13. It should be
noted that half the frames in the compressed sequence are in
a position similar to that of frame 12. This situation can be
much worse for the case of sequential prediction. For JSIV,
only the frame of interest is retrieved.

B. Spatial and Temporal Scalability

In this subsection we study the performance of JSIV when
the server is delivering reduced temporal rate and/or spatial
resolution. The SVC encoded sequences here have 4 enhance-
ment layers. The basic layer is at one-sixteenth resolution; the
first enhancement layer is at quarter resolution; the second
enhancement layer is also at quarter resolution but employs
2 layers of MGS; the third enhancement layer is at full
resolution; and the fourth enhancement layer is also at full
resolution but employs 2 layers of MGS. For JSIV, the quality
of quarter-resolution reconstructed video is measured against

NAMAN AND TAUBMAN: JPEG2000-BASED SCALABLE INTERACTIVE VIDEO (JSIV) 13

0 0.5 1 1.5 2 2.5 3

30

32

34

36

38

40

42

Rate (Mb/frame)

PS
N

R
(d

B
)

JSIV frame 12
SVC frame 12
JSIV frame 13
SVC frame 13

Fig. 10. A comparison between JSIV and SVC when the client is only
interested in the retrieval of one frame. Note that the x-axis is in (Mb/frame).

0 500 1,000 1,500 2,000

26

28

30

32

34

36

38

40

42

Rate (kb/s)

PS
N

R
(d

B
)

JSIV
SVC
INTRA

JSIV 1
2 Rate

SVC 1
2 Rate

INTRA 1
2 Rate

Fig. 11. A comparison of the performance of various schemes at full
resolution and full/half temporal frame rate for the “Speedway” sequence.

the LLth
1 resolution of the original sequence while, for SVC, it

is measured against reduced-resolution frames generated using
JSVM tools.

Figure 11 shows a comparison for the “Speedway” sequence
at full resolution with full and half temporal rate. Figure 12
shows the same comparison for the “Professor” sequence.
Figure 13 shows a comparison for the “Speedway” sequence
at quarter resolution with full and half temporal rate. Figure
14 shows the same comparison for the “Professor” sequence.
In all of these case, JSIV employs the “Hierarchical” arrange-
ment.

It can be noticed that SVC’s performance in Figure 11 is
lower than that in Figure 6. We suspect that this is due to
having more enhancement layers and more resolutions in the
case of Figure 11. The same can be said about Figure 12 and
Figure 7.

For full resolution, it can be seen that JSIV produces better
results than the alternative methods, most of the time. For
quarter resolution, however, the result is not consistent, with
SVC producing 2-3dB better results for a certain bit-rate range
of the “Professor” sequence. This rather big difference can be
partially explained by how the spatially-decimated sequences
are obtained. For SVC, it is obtained with proper low-pass
filtering using one of the tools in the SVC distribution while
for JSIV it is obtained by discarding the highest resolution
sub-bands. Thus, the JSIV version has more high frequency
components and therefore is harder to compress.

0 100 200 300 400 500 600

30

32

34

36

38

40

42

Rate (kb/frame)

PS
N

R
(d

B
)

JSIV
SVC
INTRA

JSIV 1
2 Rate

SVC 1
2 Rate

INTRA 1
2 Rate

Fig. 12. A comparison of the performance of various schemes at full
resolution and full/half temporal frame rate for the “Professor” sequence.
Note that the x-axis is in (kb/frame).

0 200 400 600 800 1,000

26

28

30

32

34

36

38

40

42

44

46

Rate (kb/s)

PS
N

R
(d

B
)

JSIV
SVC
INTRA

JSIV 1
2 Rate

SVC 1
2 Rate

INTRA 1
2 Rate

Fig. 13. A comparison of the performance of various schemes at quarter
resolution and full/half temporal frame rate for the “Speedway” sequence.

C. Window of Interest

Here, we study the performance of JSIV when the client is
interested in an arbitrary spatial region of interest; the region
investigated is the left half of each frame11 from (column 0,
row 0) to (column 176, row 288) of the “Speedway” sequence,
and from (column 0, row 0) to (column 1504, row 2000) of
the “Professor” sequence. Figures 15 shows the results for
the “Speedway” sequence, and Figure 16 for the “Professor”

11This choice is not aligned to code-block boundaries and therefore is not
the most JSIV-favorable option.

0 50 100 150 200 250 300 350

30

32

34

36

38

40

42

Rate (kb/frame)

PS
N

R
(d

B
)

JSIV
SVC
INTRA

JSIV 1
2 Rate

SVC 1
2 Rate

INTRA 1
2 Rate

Fig. 14. A comparison of the performance of various schemes at quarter
resolution and full/half temporal frame rate for the “Professor” sequence. Note
that the x-axis is in (kb/frame).

14 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 2007

0 200 400 600 800 1,000 1,200

24

26

28

30

32

34

36

38

40

42

Rate (kb/s)

PS
N

R
(d

B
)

JSIV
SVC
INTRA

Fig. 15. A comparison between SVC and JSIV when the client is interested
in only the left half of each frame of the “Speedway” sequence. SVC does
not support random spatial access for pre-compressed sequences.

0 50 100 150 200 250 300 350
28

30

32

34

36

38

40

42

Rate (kb/frame)

PS
N

R
(d

B
)

JSIV
SVC
INTRA

Fig. 16. A comparison between SVC and JSIV when the client is interested
in only the left half of each frame of the “Professor” sequence. SVC does
not support random spatial access for pre-compressed sequences. Note that
the x-axis is in (kb/frame).

sequence; in both cases, JSIV employs the “Hierarchical”
arrangement. The results reported for SVC are for full frames
as such an option is not available for pre-compressed SVC
sequences12.

Even with such a large region of interest, experimental data
reveals that JSIV performs better than SVC, especially for the
“Professor” sequence.

D. Use of Available Data

In JSIV, the client can utilize all the data available in its
cache for video reconstruction. We consider here the case of
a client that has a 48dB quality frame 9 of the “Professor”
sequence, being served by a server that is either aware or
unaware of this. Frame 9 is one of the independent frames
in the hierarchical B-frame prediction arrangement with three
levels of temporal decimation. Of course, the aware server tries
not to send any information for that particular frame.

The size of the data delivered to the client is around 1.667
Megabits while the file size of frame 9 that is already in the
client cache is slightly short of 2.25 Megabits. Figure 17 shows

12SVC supports region of interest, but the region has to be known before
compressing the sequence; therefore, it cannot be changed after compressing
the video. For example, if the SVC sequence is compressed as a left and right
halves, it would not be suitable for delivery to a client requesting columns
W/3 to 2 ·W/3, where W is the width.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

32

34

36

38

40

42

44

46

48

Frame Number

PS
N

R
(d

B
)

JSIV (aware)
JSIV (unaware)
JSIV
SVC
INTRA

Fig. 17. A comparison among various methods when the client cache has
one good quality reference frame (frame 9).

the PSNR of two WOFs around frame 9 for 5 cases: INTRA
with a client that has nothing in its cache, SVC, JSIV with
a client that has nothing in its cache, JSIV with an unaware
server, and JSIV with an aware server.

It can be seen that the availability of a good quality
frame can improve nearby frames that are partially predicted
from that frame regardless of server awareness. Of course,
the best result is obtained when the server is aware of the
client’s cache; even independent frames can benefit from the
server awareness of the client’s cache, since the server policy
allocates the available rate budget differently, as can be seen
for frames 1 and 17.

E. Data Loss Handling

Providing meaningful experimental results in the case of
data loss is hard because they require proper protection for
the different parts of the streamed sequence, for all the three
schemes being considered. Optimal protection assignment is
beyond the scope of this work. We can, however, consider how
the system behaves in case of some data loss.

Firstly, we consider the case when a frame reconstruction
deadline occurs before all the required data arrives. In this
case, concealment techniques must be employed and JSIV
should work no worse that SVC, since similar techniques can
be employed in both cases.

Secondly, we consider what happens to subsequent depen-
dent frames, whose reconstruction deadline has not yet arrived,
so that the server has an opportunity to transmit some data.
For SVC, the server has to send some or all the lost data since
it is very likely that parts of subsequent frames are predicted
from the missing pieces in the corrupted frame. Of course,
correct reconstruction of the corrupted frame is useful only
for reconstruction of subsequent frames, since its deadline has
passed. For JSIV, the server does not need to send the missing
parts of the corrupted frame since the client has moved to the
subsequent frame and is no longer interested in that frame. The
server in this case has to include the effect of the data loss
in its client-side distortion estimates and let the optimization
algorithm decide how to allocate the available data budget.

NAMAN AND TAUBMAN: JPEG2000-BASED SCALABLE INTERACTIVE VIDEO (JSIV) 15

VIII. CONCLUSION AND FUTURE WORK

In this work we have presented JSIV: a novel way of
streaming video that provides considerably better interactivity
compared to existing streaming schemes. JSIV performance
is better than existing schemes in many usage scenarios while
having little loss in others.

The use of the JPEG2000 format to store individual frames
has proven very efficient in providing accessibility and inter-
activity while Lagrange-style rate-distortion optimization of
delivered data exploits a good deal of the temporal redundancy.
Storing side-information as meta-images allows the use of the
standard JPIP protocol to send this information as well as
streaming the video itself.

The proposed scheme’s main advantage comes from not
committing to a predetermined prediction policy. This allows
the server to dynamically and adaptively change its policy
to track clients’ needs, requiring only modest computation.
The use of loosely-coupled policies makes it possible for the
client and the server to work independently, which is especially
beneficial for cases where the server cannot immediately be
aware of the client’s cache.

This work is part of an ongoing investigation in this area.
In the next work we provide a detailed description of JSIV
with motion compensation.

REFERENCES

[1] J.-R. Ohm, “Advances in scalable video coding,” Proc. of the IEEE,
vol. 93, January 2005.

[2] N. Mehrseresht and D. Taubman, “An efficient content-adaptive motion
compensated 3D-DWT with enhanced spatial and temporal scalability,”
IEEE Trans. Image Proc., pp. 1397–1412, June 2006.

[3] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable
video coding extension of the H.264/AVC standard,” IEEE Trans. on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–
1120, September 2007.

[4] ISO/IEC 15444-9, “Information technology – JPEG 2000 image coding
system – Part 9: Interactivity tools, APIs and protocols,” 2004.

[5] D. Taubman and R. Prandolini, “Architecture, philosophy and perfor-
mance of jpip: internet protocol standard for JPEG 2000,” Int. Symp.
Visual Comm. and Image Proc., vol. 5150, pp. 649–663, July 2003.

[6] ISO/IEC 15444-3, “Information technology – JPEG 2000 image coding
system – Part 3: Motion JPEG 2000,” 2007.

[7] A. Naman and D. Taubman, “A novel paradigm for optimized scalable
video transmission based on JPEG2000 with motion,” Proc. IEEE Int.
Conf. Image Proc. 2007, pp. V–93 – V–96, Septmeber 2007.

[8] ——, “Optimized scalable video transmission based on conditional
replenishment of JPEG2000 code-blocks with motion compensation,”
MV ’07: Proceedings of the International Workshop on Workshop on
Mobile Video, pp. 43–48, Septmeber 2007.

[9] ——, “Rate-distortion optimized delivery of JPEG2000 compressed
video with hierarchical motion side information,” Proc. IEEE Int. Conf.
Image Proc. 2008, pp. 2312–2315, October 2008.

[10] ——, “Distortion estimation for optimized delivery of JPEG2000 com-
pressed video with motion,” IEEE 10th Workshop on Multimedia Signal
Processing, 2008, MMSP 2008, pp. 433–438, October 2008.

[11] ——, “Rate-distortion optimized JPEG2000-based scalable interactive
video (JSIV) with motion and quantization bin side-information,” Proc.
IEEE Int. Conf. Image Proc. 2009, pp. 3081–3084, November 2009.

[12] N.-M. Cheung and A. Ortega, “Flexible video decoding: A distributed
source coding approach,” IEEE 9th Workshop on Multimedia Signal
Processing, 2007, MMSP 2007., pp. 103–106, October 2007.

[13] ——, “Compression algorithms for flexible video decoding,” Visual
Communications and Image Processing 2008, vol. 6822, no. 1, p.
68221S, 2008.

[14] P. Zanuttigh, N. Brusco, D. Taubman, and G. Cortelazzo, “A novel
framework for the interactive transmission of 3D scenes,” Signal Pro-
cessing: Image Communication, Special Issue on Interactive Represen-
tation of Still and Dynamic Scenes, vol. 21, no. 9, pp. 787 – 811, 2006.

[15] F.-O. Devaux, J. Meessen, C. Parisot, J.-F. Delaigle, B. Macq, and
C. De Vleeschouwer, “Remote interactive browsing of video surveillance
content based on JPEG 2000,” Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, vol. 19, no. 8, pp. 1143–1157, August 2009.

[16] F.-O. Devaux and C. De Vleeschouwer, “Parity bit replenishment for
JPEG 2000-based video streaming,” EURASIP Journal on Image and
Video Processing, vol. 2009, 2009.

[17] A. Mavlankar, J. Noh, P. Baccichet, and B. Girod, “Peer-to-peer
multicast live video streaming with interactive virtual pan/tilt/zoom
functionality,” Proc. IEEE Int. Conf. Image Proc. 2008, pp. 2296–2299,
October 2008.

[18] A. Naman and D. Taubman, “Predictor selection using quantization
intervals in JPEG2000-based scalable interactive video (JSIV),” Proc.
IEEE Int. Conf. Image Proc. 2010, September 2010, accepted for
publication.

[19] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Proc., vol. 9, no. 7, pp. 1158–1170, July
2000.

[20] H. Everett, III, “Generalized lagrange multiplier method for solving
problems of optimum allocation of resources,” Operations Research,
vol. 11, no. 3, pp. 399–417, 1963.

[21] K. Ramchandran, A. Ortega, and M. Vetterli, “Bit allocation for depen-
dent quantization with applications to multiresolution and MPEG video
coders,” Image Processing, IEEE Transactions on, vol. 3, no. 5, pp. 533
–545, September 1994.

[22] H.-J. Lee, T. Chiang, and Y.-Q. Zhang, “Scalable rate control for MPEG-
4 video,” Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 10, no. 6, pp. 878 –894, September 2000.

[23] J. H. Kim, J. Garcia, and A. Ortega, “Dependent bit allocation in
multiview video coding,” Image Processing, 2005. ICIP 2005. IEEE
International Conference on, vol. 2, pp. II – 293–96, September 2005.

[24] A. Naman and D. Taubman, “JPEG2000-based scalable interactive
video (JSIV) with motion compensation,” Image Processing, IEEE
Transactions on, Submitted for publication.

[25] A. Naman, “JPEG2000-based scalable interactive video (JSIV),” Ph.D.
dissertation, School of Electrical Engineering and Telecommunications,
University of New South Wales, Sydney, NSW 2052, Australia, submit-
ted for examination.

[26] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Appli-
cations, 2nd ed., ser. Springer monographs in mathematics. London:
Springer-Verlag, 2009.

[27] D. Taubman and M. Marcellin, JPEG2000: Image Compression Funda-
mentals, Standards and Practice. Boston: Kluwer Academic Publishers,
2002.

Aous Thabit Naman received B.Sc. degree in Elec-
tronics and Telecommunication Engineering from
Al-Nahrain University, Baghdad, Iraq, in 1994,
M.Eng.Sc. degree in Engineering from University
of Malaya, Kuala Lumpur, Malaysia, in 2000. He is
currently studying for the Ph.D. degree in Electrical
Engineering at the School of Electrical Engineering
and Telecommunications, Faculty of Engineering,
the University of New South Wales, Sydney, Aus-
tralia.

16 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 2007

David Taubman (M’92) received the B.S. and
B.Eng. degrees from the University of Sydney, Syd-
ney, Australia, in 1986 and 1988, respectively, and
the M.S. and Ph.D. degrees from the University of
California, Berkeley, in 1992 and 1994, respectively.

From 1994 to 1998, he was with Hewlett-
Packard’s Research Laboratories, Palo Alto, CA,
joining the University of New South Wales, Sydney,
in 1998, where he is a Professor with the School
of Electrical Engineering and Telecommunications.
He is the coauthor, with M. Marcellin, of the

book JPEG2000: Image Compression Fundamentals, Standards and Practice
(Boston, MA: Kluwer, 2001). His research interests include highly scalable
image and video compression, inverse problems in imaging, perceptual
modeling, joint source/channel coding, and multimedia distribution systems.

Dr. Taubman was awarded the University Medal from the University of
Sydney; the Institute of Engineers, Australia, Prize; and the Texas Instruments
Prize for Digital Signal Processing, all in 1998. He has received two Best
Paper awards, one from the IEEE Circuits and Systems Society for the 1996
paper, “A Common Framework for Rate and Distortion Based Scaling of
Highly Scalable Compressed Video,” and from the IEEE Signal Processing
Society for the 2000 paper, “High Performance Scalable Image Compression
with EBCOT.”

