
Optimized Scalable Video Transmission Based on
Conditional Replenishment of JPEG2000 Code-blocks with

Motion Compensation

Aous Thabit Naman
School of Electrical Engineering and

Telecommunications
University of New South Wales
Sydney, NSW 2052, Australia

aous@student.unsw.edu.au

David Taubman
School of Electrical Engineering and

Telecommunications
University of New South Wales
Sydney, NSW 2052, Australia
d.taubman@unsw.edu.au

ABSTRACT
A video stored as a sequence of JPEG2000 images can pro-
vide the scalability, flexibility, and accessibility that is lack-
ing in current predictive motion-compensated video coding
standards; however, streaming this sequence would consume
considerably more bandwidth. This paper presents a new
method for optimized streaming of a JPEG2000 video that
relies on motion compensation and server-optimized condi-
tional replenishment to reduce temporal redundancy, in col-
laboration with an intelligent client policy for reconstructing
the available content. In particular, we propose transmis-
sion of motion vectors and an optimized number of layers,
possibly zero, for each code-block of the JPEG2000 repre-
sentation of each new frame. We also propose the use of a
sliding window to optimize a group of frames such that code-
blocks of these frames have more than one chance of being
enhanced if that is beneficial to subsequent frames. Rate-
distortion optimization in the Lagrangian sense is employed
to achieve the lowest possible MSE. It is expected that mo-
bile clients with their limited processing powers would ben-
efit from this work in real-time and interactive applications,
such as teleconferencing and surveillance. This paper in-
troduces the concept, formulates optimization criteria, and
compares the performance with alternative strategies.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Teleconferencing, video signal processing, image coding, im-
age communication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MV’07, September 28, 2007, Augsburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-779-7/07/0009 ...$5.00.

1. INTRODUCTION
One way of classifying existing digital video coding stan-

dards is by their scalability. Standards such as MPEG-1
through MPEG-4 and H.261 through H.264 have been very
successful; however, they provide at best limited scalability
capabilities. Conversely, a scalable coder aims at producing
layered or embedded bit-streams with progressively higher
quality, resolution, and frame rate. Although scalable video
coding has shown progress in the last few years [2] [5] [4],
it still has certain issues and it imposes certain restrictions
on streaming. For example, if the client were interest in
one particular frame only, the server would have to trans-
mit the group of frames that are needed to invert the motion
compensated transform and extract that frame.

In our earlier work [3], we proposed a new paradigm for
serving video; in which, we rely on JPEG 2000 to indepen-
dently compress the original video frames, providing quality
scalability and spatial resolution scalability. To exploit the
inter-frame redundancy, we rely on a server policy to opti-
mally select the number of quality layer for each code-block
transmitted and on a client policy to make the most of the
received (distorted) frames and a (possibly client-specific)
motion model.

In [3], we restricted our attention to the case where re-
dundancy is exploited only within each pair of frames. By
contrast, the current paper extends the approach to the case
in which the server optimization policy is run over a sliding
window of frames; this potentially allows for the exploitation
of redundancy between any two frames in the window.

Some ideas presented in this paper and [3] are new; how-
ever, some related concepts can be found in a recent work
about interactive browsing of 3D scenes by one of the au-
thors, which has shown promising results [8]. In that work,
the server dynamically selects JPEG2000 code-block layers
to deliver to the client, so that the client achieves the best
quality based on what the server knows about the client
cache. In our present work, the transmission history for
frames within the server’s optimization window plays the
same role as the client cache model in [8].

Another recent work [1] investigates a problem similar to
the one in this paper. That work focuses on delivering video
to a dumb client, lacking the distortion-sensitive client re-
construction policy proposed here. By contrast with our
proposed approach, [1] does not take advantage of motion
compensation to reduce temporal redundancy. Our pro-

Rate-Distortion Optimization &
Conditional Replenshiment

C
lie

nt
 D

is
to

rti
on

Es

tim
at

io
n

2D-DWT
Analysis

2D-DWT
Synthesis

Code-block
Selection

Motion
Compensation

Server Client

JPEG2000
Compression

Delay Motion
Estimation

2D-DWT
Analysis

2D-DWT
Synthesis

Code-block
Selection

Motion
Compensation

Optimal Selection
of JPEG2000 code-blocks

Motion Vectors

Reconstruct Video

Video
Content

Figure 1: A simplified block diagram of the proposed JPEG2000 video streaming system.

posed server policy has the option to improve the quality
of previous frames within the sliding window, wherever this
contributes directly or indirectly (e.g., through re-use in sub-
sequent frames) to the expected reconstruction quality. Fi-
nally, we allow for code-blocks in a current frame to be pre-
dicted from multiple earlier frames, if this proves favorable.

We now briefly consider some benefits of such a delivery
system for mobile clients. More advantages of this paradigm
are discussed in Section 6. For clients with limited process-
ing power, the proposed paradigm gives the capability of
processing and displaying only a desired region of interest
within the video. It also enables the server to stream an arbi-
trary region without the need to re-compress the video. Mo-
bile clients commonly rely on wireless communication links
with high loss ratio; predictive coding is less suitable for
such clients as it requires the server to re-send all the lost
packets. Using the proposed paradigm, however, the server
can deal with loss by adjusting its delivery policy for future
frames alone, unburdened by the need to correct frames that
are no longer current. There is also no need for the server
to use the same motion model with every client, which pro-
vides more options to handle clients with diverse needs and
channel conditions.

The remainder of the paper is structured as follows. Sec-
tion 2 gives the block diagram of the system under con-
sideration. Sections 3 and 4 elaborate on our client and
server policies explaining their theoretical aspects. Section
5 provides preliminary experimental results. Section 6 dis-
cusses the benefits of the proposed paradigm further, and
elaborates on some contexts where it is applicable. Finally,
section 7 states our conclusions.

2. SYSTEM OVERVIEW
Figure 1 depicts a simplified block diagram of the system

under consideration; we intentionally leave out the sliding
window to simplify the explanation. The first step for each
new frame fn is to apply JPEG2000 compression and find
the resulting rate-distortion slopes for the various layers of
each code-block. At the same time, this frame together with
an earlier frame are used for motion estimation. It is im-
portant to note fn−1 does not necessarily refer to the frame
which immediately precedes fn in time; the actual identity

of fn−1 depends on playback direction and frame rate, which
can be decided on the fly for each client.

The client distortion estimation block attempts to model
the distortion of each code-block in each frame, based on the
history of transmitted information. This model could also
be adapted to reflect knowledge of the network conditions,
client browsing preferences and the client browsing cache.
In this paper, our estimation is exact since we ignore packet
loss and assume that the client rendering policy is identical
to that modeled in the server. In general, this is not the case
as the server cannot and need not have an exact nor a very
accurate estimate of the client distortion. It is preferable
that the server estimates distortion utilizing precomputed
lookup tables. These lookup tables can be generated af-
ter compression for off-line applications, while for real-time
browsing a different server policy might be followed. Our
purpose in this paper is to simplify the optimization con-
ditions sufficiently to obtain a reliable upper bound for the
performance that can be expected of a more realistic sys-
tem. We shall have more to say about how meaningful these
bounds are in Section 5.

The rate-distortion optimization block of Figure 1 is re-
sponsible for Lagrangian rate-distortion optimization, while
the code-block selection block selects code-blocks either from
the current frame or from motion-compensated previous frames,
whichever produces less distortion.

3. CLIENT POLICY
For each code-block Cβ

n of each frame fn, the client re-
ceives a number of quality layers qβ

n, possibly 0. We write
C̃β

n for the dequantized samples which can be recovered from

these layers and D̃β
n =

∥∥∥C̃β
n − Cβ

n

∥∥∥2

for the corresponding

distortion.
As an alternative to using C̃β

n in frame fn, the client has
the choice of using any of the corresponding sub-band sam-
ples, C̃β

n−h→n to C̃β
n−1→n, obtained from motion compen-

sating the optimized previous h frames; fn−h to fn−1. The
tilde-notation here is used to remind the reader that this
version also involves quantization distortion. Let us denote
the minimum distortion associated with these code-blocks

by

D̃β
→n = min

n−h6s<n

{
D̃β

s→n

}
where D̃β

s→n =
∥∥∥C̃β

s→n − Cβ
n

∥∥∥2

. Ideally, a good client pol-

icy would select the pieces that result in the least possible
distortion; thus, the minimum client distortion Dβ

min,n for

code-block Cβ
n would be

Dβ
min,n(qβ

n) = min
{

D̃β
→n, D̃β

n(qβ
n)

}
(1)

The method proposed here is not practical since the client
needs to have extensive statistics about the frames in order
to make the right decisions; however, the results presented
here serve as guidelines to the maximum expected benefits
of such a system. Realistic implementations need to em-
ploy approximations in order to reduce the amount of frame
statistics that might need to be sent to the client and reduce
the processing time of the client. Indeed, we proposed in [3]
an approximation that leads to a simple, effective and real-
istic implementation for the server and the client. Another
approximation that can benefit the client policy is the esti-
mation of the rate-distortion slopes and the total distortion
associated with a JPEG2000 stream from the code-blocks
themselves without access to the full quality frames or any
side information supplied by the server [6].

4. SERVER POLICY
Server optimization is performed at epochs, over a sliding

window Wk, which consists of w frames, fk−w+1 through fk.
In our current implementation each window has a unique
epoch, with the window advancing by one frame between
epochs. Each frame fn within Wk has a chance to contribute
data to the current transmission. Apart from the latest
frame fk, any code-block Cβ

n of any frame within the window
might have received some number of quality layers qp,β

n from
an earlier optimization epoch p. For bandwidth control, the
server employs a leaky bucket strategy. In the optimization
epoch for Wk, the server is able to add B − Fk bytes to the
bucket where B is the bucket capacity and Fk is the current
bucket fullness. Data is transmitted at a constant rate of L
bytes/frame, which empties the bucket, making room for the
optimization algorithm to allocate additional data in future
epochs.

Using an additive model for distortion and equation (1),
the client distortion for the frames within the sliding window
can be expressed by

D =

k∑
n=k−w+1

∑
β∈fn

Dβ
min,n(qβ

n)

The minimization of D can be (approximately) recast as the
minimization of a family of Lagrangian functionals,

Jλ =

k∑
n=k−w+1

∑
β∈fn

(
Dβ

min,n(qβ
n) + λ ·

∣∣∣qβ
n

∣∣∣) (2)

where
∣∣qβ

n

∣∣ denotes the number of bytes in qβ
n layers of Cβ

n

and the Lagrangian parameter λ is adjusted until the so-
lution which minimizes Jλ satisfies the length constraint
B − Fk.

Direct optimization of equation (2) appears difficult, since

each Dβ
min,n(qβ

n), except when n = k − w + 1, depends in a

Convex Hull

D
is

to
rti

on
 (D

)

Length

One quality layer

Two quality layer

Three quality layer

Figure 2: A typical rate-distortion curve for a code-
block Cβ

p showing the quality layers and Dβ
min,n(0)

when D̃β
→n < D̃β

n(0).

complicated way on earlier frames that are also being opti-
mized. A near optimal solution, however, is possible. Con-
sider the oldest frame in the sliding window at n = k−w+1,
which depends only on earlier frames that are outside the
optimization window. For a given value of λ, qβ

k−w+1 can be
easily determined as explained in the following subsections.
Once these quality layers are determined, D̃β

k−w+1→k−w+2

can be calculated, at which point qβ
k−w+2 can be determined,

since all of its preceding frames are known. This process is
repeated until all qβ

n within the sliding window are deter-
mined.

It should be noted that each code-block C̃β
n may con-

tribute not only to frame fn, but also to future frames.
These later contributions generally involve motion compen-
sation, which spreads the influence of the distortion in C̃β

n

over multiple code-blocks in the future frames. In order
to properly account for these future frame contributions,
the D̃β

n terms from highly re-used code-blocks should be
weighted more heavily in equation (2). We refer the reader
to [3] for more details on how to find these weights. With
a window size of w = 1, it is not possible to discover the
extent to which a code-block influences future frames in the
epoch which assigns its quality. For longer windows, how-
ever, an iterative multi-pass strategy can take advantage
of such information to assign meaningful distortion weights
and refine the associated code-block contributions. For the
present paper, we choose not to pursue the multi-pass ap-
proach mainly for simplicity. Our initial investigations in
this direction show that the multi-pass algorithm yields only
small improvements with the sequences considered in Sec-
tion 5.

We turn our attention now to the problem of finding qβ
n.

Initially, we set each q0,β
n = 0. Figure 2 shows a typical

rate-distortion curve for a code-block Cβ
n . Each circle on the

figure represents one quality layer. Also shown on the figure
is the distortion D̃β

min,n(0) when D̃β
→n < D̃β

n(0), which can
be achieved by using motion compensated prediction instead
of C̃β

n . If the previous frames are empty, non-existent, or if

D̃β
→n > D̃β

n(0), the optimal choice of qβ
n is given by

qp,β
n = max

q>q
p−1,β
n

{
q | λβ

n(q) > λ
}

(3)

where λβ
n(q) = (D̃β

n(q− 1)− D̃β
n(q))/(|q| − |q− 1|) is the dis-

tortion length slope associated with layer q. The reason for
insisting that q > qp−1,β

n is that the server adds all allocated
code-block data to the leaky bucket immediately after each
optimization epoch. We do not allow the server to withdraw
data from the bucket, since that would impose restrictions
on the physical embodiment of the leaky bucket abstrac-
tion. Note that distortion-length characteristics, D̃β

n(qβ
n) vs.

|qβ
n|, of any code-block in any JPEG2000 image is convex by

construction [7].

If D̃β
→n < D̃β

n(0), the availability of previous frames re-
duces the effective distortion associated with the choice qβ

n =
0 to Dβ

min,n(0). Figure 2 shows the impact of this option on
the effective distortion-length convex hull. The new maxi-
mum distortion-length slope is written as λβ

min,n(0) and the

optimal choice for qp,β
n becomes

qp,β
n =

 0 if λ > λβ
min,n(0)

max
q>q

p−1,β
n

{
q | λβ

n(q) > λ
}

if λ 6 λβ
min,n(0) (4)

Obviously, the quality of a frame improves progressively
since a frame can only get more quality layers with each
optimization pass. Therefore, the client has more than one
opportunity for displaying a frame and it would reconstruct
a better-quality video if it can afford to wait. As a result, it
would be pointless to use long windows for real-time appli-
cations.

5. EXPERIMENTAL RESULTS
The results presented here are divided into three subsec-

tions. The first part compares the results obtained here to
our earlier method [3]. The second part elaborates on the
performance for various window sizes and history lengths.
The last part investigates the impact of using motion com-
pensation and compares our results with those of [1].

The results are for two different sequences. The first se-
quence is from the DCI StEM content1, which is referred to
as “Clip 2” during the DCI compression test, starting from
frame 6000 up to 6033, with filenames MM 4K XYZ 06000.tif
up to MM 4K XYZ 06033.tif. The images have a 4096 ×
1714 resolution with a bit-depth of 16-bit per component
in the XYZ domain at 24 frames per second, however, only
the Y component is used here, after being gamma-corrected
and truncated to 8 bits. Also, the images are cropped to
4096 × 1712 by removing the bottom two rows due to lim-
itations in the available motion compensation subroutines.
This sequence is referred to as sequence 1 in this work.

The second sequence was used in [1]2. It is a 200 frame
CIF surveillance sequence captured with a fixed camera at
25 fps. It is in the YUV space; however, only the Y com-
ponent is used here, with 8 bit precision.This sequence is
referred to as sequence 2 in this work.

1Digital Cinema Initiatives (DCI) and American Society of
Cinematographers (ASC), StEM mini-movie access proce-
dure available at http://www.dcimovies.com/.
2Speedway sequence available from Wireless Cameras
and Audio-Visual Seamless Networking Project website;
http://www.ist-wcam.org.

Both sequences are compressed into the JPEG2000 format
using the Kakadu implementation3 employing five levels of
wavelet decomposition, 20 quality layers, and a code-block
size of 32×32. The motion-compensation routines are mesh-
based and applied only at the full frame resolution, in 16×16
patches. Each patch is divided into an upper and lower
triangle and affine transformation is used. Sub-pixel values
are obtained using the traditional cubic spline filtering and
motion is estimated to 1/8 of a pixel accuracy.

It is important to note that the rates given here are only
for the encoded sub-band samples; they exclude any headers,
motion vectors, and signaling to the client, etc. Also, all the
calculations and selections are performed on a code-block
basis rather than precincts.

5.1 Comparison with our previous work
In [3], we considered only the special case in which each

pair of frames has one motion model, which can be used to
produce a motion compensated estimate of the second frame
from the first frame. A joint fixed byte budget was allocated
to the code-blocks of each pair of frames, so as to minimize
the expected distortion.

Figure 3 shows the peak signal-to-noise ratio (PSNR) for
sequence 1 at 960kb/s for four methods. The first method,
referred to as INTRA, is to optimize each frame individually.
The second one is from our previous work [3], referred to as
REAL-P. The third one optimizes a pair of frames exactly
similar to [3] but using the optimization algorithm proposed
in this paper, referred to as IDEAL-P. Finally, the last one
applies the general algorithm proposed here to a sequence
of frames using a window length of four and a history of
one, referred to as IDEAL-WIN. Table 1 shows the PSNR
for these methods at various bit rates, which is calculated
from the average mean squared error (MSE) of the entire
sequence. Figure 4(a) shows a part of the original frame
10, whereas, Figures 4(b) and 4(c) show the reconstruction
of the same area at 960kb/s using the INTRA and IDEAL-
WIN methods respectively.

Table 1: Comparison between the method presented
in [3] and the method presented in this paper at
various bit rates. All values are PSNR in dB of the
average MSE.

Bit Rate kb/s
Method 960 2880 5760 11520 17280

INTRA 29.33 34.11 37.23 39.62 40.60
REAL-P [3] 31.43 35.63 38.03 39.79 40.61
IDEAL-P 31.50 35.58 38.07 39.86 40.72

IDEAL-WIN 32.53 36.20 38.34 39.94 40.75

It is important to remind the reader that REAL-P is a
realistic method while IDEAL-P is idealistic and serves as a
guideline only. A comparison between their results reveals
that the approximations we introduced in [3] are reasonable
and perform well. For the IDEAL-WIN method, we observe
significantly higher quality than both REAL-P and IDEAL-
P indicating that a realistic implementation of IDEAL-WIN
would very likely perform better than REAL-P.

In [3], we compared the approach termed REAL-P with a
traditional predictive strategy, in which the second frame of
3http://www.kakadusoftware.com/, kakadu software, ver-
sion 5.2.4

0 5 10 15 20 25 30 35
29

29.5

30

30.5

31

31.5

32

32.5

33

33.5

34

Frame Number + 6000

PS
N

R
 (d

B
)

INTRA
REAL-P
IDEAL-P
IDEAL-WIN

Figure 3: PSNR comparison between the method
presented in [3] and the method presented in this
paper at 960kb/s bit rate.

each pair is predicted from the first after motion compen-
sation and only the prediction residual is compressed. Such
a comparison cannot meaningfully be made in the case of
the moving window, since an equivalent predictive coding
scheme would have infinite memory, leading to unbounded
drift when reconstructed at reduced quality.

5.2 Performance for various history and win-
dow lengths

Window and history lengths of up to four are used in our
testing. We find that increasing the history produces only
minor improvements in the PSNR for the video sequences
examined here. Increasing the window length provides a
better management of the allocated byte budget as the al-
gorithm becomes less greedy. Figure 5 shows that as the
window length increases, the fluctuations in the PSNR de-
crease. Figure 5(a) also shows how the PSNR quickly im-
proves once the optimization algorithm is able to exploit the
availability of previous frames.

5.3 Comparison for the case of no motion com-
pensation

For sequence 2, Devaux et el. [1] use a different concept
than ours; however, their concept is equivalent to window
and history lengths of one frame with no motion compen-
sation; we label this configuration as NM. Table 2 shows a
comparison of the NM configuration with the full motion
compensated approach proposed here, as well as the indi-
vidual frame optimization strategy, identified as INTRA.

Significantly lower performance results are reported in [1]
for both the INTRA and NM cases; the reason, we suspect,
is that the JPEG2000 stream used in [1] employed very small
code-blocks and only 4 quality layers. Nevertheless, the re-
sults presented in Table 2 reveal that motion compensation
and non-trivial windows provide a good improvement over
the the NM case.

6. DISCUSSION
Traditional video encoding algorithms impose certain re-

(a) The original. (b) At 960 kb/s using the
INTRA method.

(c) At 960 kb/s using the
IDEAL-WIN method.

Figure 4: Part of frame 10 of sequence 1 reconstruct
using different methods.

Table 2: Comparison of various methods for se-
quence 2 at various bit rates. All values are PSNR
in dB of the average MSE.

Bit Rate kb/s
Method 288 500 1000 2000

INTRA 29.07 31.12 34.13 38.09
w = 1, h = 1, NM 35.48 37.49 39.88 42.04

w = 1, h = 1 36.74 38.27 40.13 42.13
w = 2, h = 1 36.84 38.35 40.21 42.17

striction on how the stream should be decoded. This is true
both for predictive schemes and “wavelet-like” scalable video
coding schemes. For example, reduced frame-rate video
playback can be supported by both hierarchical predictive
schemes (e.g., via B-frames in MPEG-1/2) and 3D wavelet-
based schemes (e.g., via MCTF). However, these schemes
only allow efficient recovery of a pre-determined subset of
the frames (e.g., the even indexed frames). The paradigm
proposed here imposes no such restrictions. The same can
be said of the playback direction. Whereas predictive coders
require the video sequence to be decompressed only in the
forward direction, our proposed client/server driven condi-
tional replenishment scheme can be used equally efficiently
for both forward and reverse playback. The server is free to
send only those motion parameters which would be useful
to the client. In the same way, the proposed paradigm al-
lows spatio-temporal regions which are of no interest to the
client to be skipped, simply by assigning the relevant code-
blocks a weight of 0 in the optimization phase. Of course,
this changes the way in which motion compensation should
be used in predicting future frames, but that is handled dy-
namically by the server’s optimization policy.

For lossy transmission, predictive coding requires the server
to retransmit all the lost packets, whereas the proposed
paradigm makes it possible for the server to send new code-
blocks from subsequent frames instead of the ones that were

0 5 10 15 20 25 30 35
29
30
31
32
33

Frame Number + 6000

PS
N

R
 (d

B
)

a) window size = 1

0 5 10 15 20 25 30 35
29
30
31
32
33

Frame Number + 6000

PS
N

R
 (d

B
)

b) window size = 2

0 5 10 15 20 25 30 35
29
30
31
32
33

Frame Number + 6000

PS
N

R
 (d

B
)

c) window size = 3

0 5 10 15 20 25 30 35
29
30
31
32
33

Frame Number + 6000

PS
N

R
 (d

B
)

d) window size = 4

Figure 5: PSNR for sequence 1 at 960 kb/s for various window sizes and a history length of 1.

lost in transmission. Estimated loss probabilities and other
statistics from network modeling can be included in the op-
timization as well. For the same compressed video stream,
real-time and off-line clients can be served using different
window sizes, allowing delay to be traded against efficiency
and the ability to correct transmission errors.

On the server side, it is possible for the server to opti-
mize the delivered video aggressively if it is lightly loaded
or use a simpler optimization algorithm when it is serving
many clients. For real-time broadcasting, it is possible to
split the complete process into three separate stages, possi-
bly running on different machines; one for compression, one
for determination of the motion parameters and associated
inter-frame distortion statistics, and one for on-line serving
of different clients. Depending on the capabilities of the
client and the available bandwidth, the server can choose to
send approximate motion vectors or no motion information
at all, adjusting its optimization algorithm accordingly.

7. CONCLUSIONS
The method present here is an idealistic way of optimizing

the streaming of a JPEG2000 based video, which serves as a
guideline to the maximum expected benefits of the paradigm
we are proposing here and in an earlier paper. The paradigm
proposes serving a JPEG2000 video using dynamically opti-
mized conditional replenishment of JPEG2000 code-blocks.
It solves issues in scalability and accessibility of the cur-
rent video encoding algorithms beside being very flexible and
performing reasonably well. We found that longer windows
provide a better byte budget management and reduce the
fluctuations in the PSNR of the reconstructed frames; while
improvements produced by using longer history depends on
the video content. More research is needed to simplify the
calculations in order to make real-time streaming efficient
and feasible.

8. REFERENCES
[1] F.-O. Devaux, J. Meessen, C. Parisot, J.-F. Delaigle,

B. Macq, and C. De Vleeschouwer. A flexible video
transmission system based on JPEG2000 conditional
replenishment with multiple references. Proc. IEEE Int.
Conf. Acoust. Speech and Sig. Proc., April 2007.

[2] N. Mehrseresht and D. Taubman. An efficient
content-adaptive motion compensated 3D-DWT with
enhanced spatial and temporal scalability. IEEE Trans.
Image Proc., pages 1397–1412, June 2006.

[3] A. Naman and D. Taubman. A novel paradigm for
optimized scalable video transmission based on
JPEG2000 with motion. Proc. IEEE Int. Conf. Image
Proc. 2007, Septmeber 2007. in press.

[4] J.-R. Ohm. Advances in scalable video coding. Proc. of
the IEEE, 93, January 2005.

[5] H. Schwarz, D. Marpe, T. Schierl, and T. Wiegand.
Combined scalability support for the scalable extension
of H.264/AVC. Proc. Int. Conf. on Multimedia and
Expo, 2005, July 2005.

[6] D. Taubman. Localized distortion estimation from
already compressed JPEG2000 images. Proc. IEEE Int.
Conf. Image Proc., 2006.

[7] D. Taubman and M. Marcellin. JPEG2000: Image
Compression Fundamentals, Standards and Practice.
Kluwer Academic Publishers, Boston, 2002.

[8] P. Zanuttigh, N. Brusco, D. Taubman, and
G. Cortelazzo. Server policies for interactive
transmission of 3D scenes. IEEE Multimedia Signal
Processing Workshop, pages 59–64, October 2006.

