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Abstract—A JPEG2000 compressed video sequence can pro-
vide better support for scalability, flexibility, and accessibil-
ity at a wider range of bit-rates than the current motion-
compensated predictive video coding standards; however, it
requires considerably more bandwidth to stream. The authors
have recently proposed a novel approach that reduces the
required bandwidth; this approach uses motion compensation
and conditional replenishment of JPEG2000 code-blocks, aided
by server-optimized selection of these code-blocks. The proposed
approach can serve a diverse range of client requirements and can
adapt immediately to interactive changes in client interests, such
as forward or backward playback and zooming into individual
frames. This work extends the previous work by approximating
the distortion associated with the decisions made by the server
without the need to recreate the actual video sequence at the
server. The proposed distortion estimation algorithm is general
and can be applied to various frames arrangements. Here, we
choose to employ it in a hierarchical arrangement of frames,
similar to the hierarchical B-frames of the SVC scalable video
coding extension of the H.264/AVC standard. We employ a
Lagrangian-style rate-distortion optimization procedure to the
server transmission problem and compare the performance of
both distortion estimation and exact distortion calculation cases
against streaming individual frames and SVC. Results obtained
suggest that the distortion estimation algorithm considerably
reduces the amount of calculation needed by the server without
enormously degrading the performance compared to the exact
distortion calculation case. This work introduces the concepts,
formulates the estimation and optimization problems, proposes a
solution, and compares the performance to alternate strategies.

I. INTRODUCTION

Scalable video can solve many existing problems in video
storage and streaming; as it can accommodate the varying
needs of different clients from one base source file; and it can
dynamically adapt to available network bandwidth gracefully
degrading the streamed video quality. For this reason, it has
been an active area of research in the last twenty years
with many promising results [1] [2] [3]. The existing video
coding standards such as MPEG-1 through MPEG-4 and
H.261 through H.264 offer at best limited scalability. Recently,
a scalable video coding (SVC) extension to H.264/AVC has
been approved within the ISO working group known as MPEG
to provide improved scalability options. For all these standards
the need to exploit inter-frame redundancy imposes restrictions
on video structure that limit accessibility for streaming appli-
cations; one example is the need to stream multiple frames

even if the client is interested in only one specific frame.
Recently, the authors have presented a new approach for

serving scalable video [4] [5] [6]. To provide for quality and
spatial resolution scalability, this approach relies on JPEG2000
to independently compress the individual frames. For inter-
frame redundancy reduction, the approach relies on motion
compensation and optimized selection of JPEG2000 code-
blocks. These goals are achieved through the cooperation of
loosely coupled server and client policies. The server policy
dynamically determines which code-blocks to send, while the
client policy determines how best to make use of the data
which is received from the server, possibly in conjunction with
some motion model.

In [4], we presented the approach and presented one realistic
implementation; however, that work is limited to the special
case in which redundancy is exploited only within disjoint
frame pairs. In [5], the server optimization policy was extended
to a sliding window of sequential frames, with the potential
to exploit the redundancy between any two frames within the
window. In [6] the server optimization policy was extended to
a hierarchical group of frames, similar to the hierarchical B-
frames dyadic prediction structure used by the SVC extension
of H.264/AVC. In this paper, we turn our attention to im-
proving the real-time performance of the server by estimating
the distortion associated with the server selection of code-
blocks rather than reconstructing the video to calculate the
exact distortion. The results presented here are still somewhat
idealistic; as it is assumed that the client has all the necessary
information to make optimal use of the data it receives from
the server. This allows us to focus only on the server policy.

Recently Devaux et al. [7] investigated a problem similar
to the one we investigated in [5]; however, that work deals
only with sequential prediction and does not employ motion-
compensation. Another recent work by Cheung and Ortega
[8] is similar to our work in attempting to enable flexible
video delivery by dealing with motion information and residual
distortion as side data; unlike the approach proposed here,
theirs is based on distributed video coding.

The applications of the paradigm under consideration are
diverse and we expect real-time interactive applications, such
as surveillance video browsing and teleconferencing, to benefit
the most. We briefly mention some benefits here; the interested



reader can also refer to [4] [5]. The server can adapt the
streamed video to the client’s processing power, resolution,
region of interest, or motion-compensation capability without
the need to recode the video. For lossy transmission environ-
ments, the server does not need to retransmit lost packets,
instead it can adapt by adjusting its delivery policy for future
frames alone. Both the client and the server can easily and
dynamically change from video playback mode to individual
frame browsing mode and any data in the client cache is
readily available for the reconstruction of individual frames.
In this paper, we choose to examine a scenario in which the
client may be interested in viewing a particular frame from the
video, in addition to browsing the streamed video as a whole.
Such a scenario is common in video surveillance browsing
applications and also interesting for video editing.

The remainder of the paper is structured as follows. Sections
II and III elaborate on our client and server policies, explaining
their theoretical aspects. Section IV provides experimental
results. Finally, Section V states our conclusions.

II. CLIENT POLICY

Motion compensation is widely used to exploit inter-frame
temporal redundancy. Here, we choose to arrange the frames
in a dyadic hierarchical structure with temporal decimation
levels T0, T1, . . . TK . Figure 1 shows the structure for the case
of K = 3. Each frame belongs to one or more temporal
decimation level Tk depending on its position. Frames at level
TK are not predicted from any other frame (intra frames). At
temporal levels with k < K, the code-blocks can either come
from the frame itself (intra code-blocks) or be predicted from
the two nearby frames as shown in Figure 1. We write fk

→n

for the predicted frame given by

fk
→n =

1
2

(
Wn−p→n

(
fk

n−p

)
+Wn+p→n

(
fk

n+p

))
=

1
2

(
fk

n−p→n + fk
n+p→n

)
(1)

where Wa→b is the motion compensation operator mapping
fa to fb and p = 2k is the distance between a frame and the
two adjacent frames at the kth temporal level.
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Fig. 1. Two groups of pictures in the dyadic hierarchical structure. The arrows
show prediction directions and the numbers at the top are frame indices.

For each code-block Cβ
n of each frame fn the client

receives zero or more quality layers qβ
n . Consequently, the

dequantized samples of a code-block C̃β
n have an associated

distortion given by D̃β
n = ‖C̃β

n −Cβ
n‖2. For each code-block,

the client chooses the sub-band samples in Cβ
→n obtained

from the two-dimensional discrete wavelet transform (2D-
DWT) of frame f→n if their corresponding distortion error
Dβ
→n = ‖Cβ

→n − Cβ
n‖2 is smaller than D̃β

n; otherwise C̃β
n is

selected. Thus, the distortion in Cβ
n is given by

Dβ
n = min

{
D̃β

n, Dβ
→n

}
(2)

In this work, we assume that the client has the information
required to make decisions on the same basis as the server.
This is unrealistic as the client usually receives only partial
and quantized information. However, this assumption is more
reasonable for the case in which the server uses only distortion
estimates, which is the chief feature of this paper.

III. SERVER POLICY

The frames are divided into groups of pictures G, each
with 2K+1 frames. The last frame in group Gs is also the
first frame in Gs+1. Each G is jointly optimized subject to
a transmission budget of Lmax; as such, frames that belong
to TK have two chances of receiving data. Using an additive
model, the distortion in one G is given by

D =
∑
n∈Gs

∑
β∈fn

Dβ
n (3)

The minimization of D subject to length constraint Lmax can
be (approximately) recast as the minimization of a family of
Lagrangian functionals,

Jλ =
∑
n∈Gs

∑
β∈fn

(
Dβ

n + λ · |qβ
n|

)
(4)

where |qβ
n| denotes the number of bytes in qβ

n quality layers of
Cβ

n . The Lagrangian parameter λ is adjusted until the solution
which minimizes Jλ satisfies the length constraint.

Direct minimization of (4) has two difficulties. The first
is in selecting qβ

n since Dβ
n for fn /∈ TK depend on other

frames whose contribution is also being optimized. The second
difficulty is that each Cβ

n might contribute to code-blocks in
other frames, in which case its distortion contribution should
be weighted accordingly; however, this contribution is not
known until the decisions for those other frames are made.

To deal with these two difficulties, we propose a two pass
approach. In the first pass (PASS-1), qβ

n are determined for
each Cβ

n . In the second pass (PASS-2), the contributions
of each Cβ

n are evaluated and contribution weights wβ
n are

determined as explained in III-B. These weights are used in
the next iteration of PASS-1. Multiple iterations of PASS-1
followed by PASS-2 are possible, where last iteration can skip
PASS-2. However, we found that very little improvement is
obtained beyond the second iteration.

For PASS-1, we notice that fK
n are independent of any

other frames and qβ
n can be easily determined for a given λ

as explained next. Once these are determined, the distortions
Dβ

n for all the fK−1
n are known and their qβ

n can similarly be
determined. This process is repeated until all qβ

n are decided.
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Fig. 2. A typical convex rate-distortion curve for a code-block Cβ
n showing

the quality layers and Dβ
→n when Dβ

→n < D̃β
n(0).

We turn our attention to determining qβ
n . Figure 2 shows

a typical distortion-length curve for a code-block Cβ
n , which

is guaranteed to be convex by construction [9]. Each circle
in the figure represents one quality layer. Also shown in the
figure is the distortion Dβ

→n. We define the distortion-length
slope associated with each qβ

n by λβ
n(q) = (D̃β

n(q − 1) −
D̃β

n(q))/(|q| − |q − 1|).
In the absence of any prediction data or when Dβ

→n >
D̃β

n (0), qβ
n is optimally determined from

qβ
n = max

{
q | λβ

n(q) > λ
}

(5)

For fk
n where k < K, the existence of prediction sources

reduces the effective distortion associated with qβ
n = 0 to Dβ

→n

when Dβ
→n < D̃β

n (0). This reduces the effective distortion-
length slope associated with one or more initial quality layers
to λβ

→n, as shown in Figure 2. The optimal choice for qβ
n then

becomes

qβ
n =

{
0 if λ > λβ

→n

max
{
q | λβ

n(q) > λ
}

if λ 6 λβ
→n

(6)

A. Distortion Estimation

The distortion in the reconstructed video originates from
two main sources: motion distortion DM,β

→n , due to motion
modeling difficulties such as occlusion, aperture issues, and
parameter quantization; and quantization distortion DQ,β

→n,
arising from the distorted reference frames used for motion
compensation. Under the assumption that these are roughly
uncorrelated, the distortion in Dβ

→n can be approximated by
[4]

Dβ
→n ≈ DQ,β

→n + DM,β
→n (7)

The distortion estimation algorithm separately accounts for
these sources of distortion. Motion distortion can be easily
pre-calculate and stored in the server, based on unquantized
reference frames. At most three motion distortion fields are
needed for each predicted frame since each code-block in the
2D-DWT of a frame can be predicted either from the left, the
right, or the average of these two references.

The propagation of quantization distortion due to motion
compensation is more complex and requires elaboration. The
error in the reference frame fr, can be expressed in term of
the errors at each location k in each of its sub-bands b, as

δfr =
∑

b

∑
k

δBb
r [k] · Sb

k

where Sb
k denotes the relevant synthesis vectors (images). Ap-

plying the motion mapping operator, the error in the predicted
frame fn is

δfn =
∑

b

∑
k

δBb
r [k] · Wr→n(Sb

k)

since Wr→n is a linear operator. The error at the pth location
in the predicted sub-band b′ of fn, due to quantization in the
kth location of sub-band b in fr can be obtained by applying
the linear analysis operator Ab′

p for sub-band b′ at location p;
that is,

δBQ,b′

r→n [p] =
∑

b

∑
k

δBb
r [k] ·

〈
Wr→n(Sb

k), Ab′

p

〉
Assuming that the quantization errors in the sub-bands are

approximately uncorrelated, the distortion power for some
region R′ around p in sub-band b′ can then be approximated
by ∑

p∈R′

∣∣∣δBQ,b′

r→n [p]
∣∣∣2

≈
∑

b

∑
p∈R′

∑
k

∣∣δBb
r [k]

∣∣2 · 〈Wr→n(Sb
k), Ab′

p

〉2

︸ ︷︷ ︸
Db→b′
R′

The fact that both the W(Sb
k) and Ab′

p operators have limited
support with decaying boundaries means that Db→b′

R′ depends
mainly on the distortion contributions δBb

r [k] inside and
around the region R, the projection of R′ onto sub-band b. If
R′ is small enough such that the distortion around it can be
approximated by a uniform quantization noise power Db

R/|R|,
we have

Db→b′

R′ ≈ Db
R
|R|
·

∑
p∈R′

∑
k

〈
Wr→n(Sb

k), Ab′

p

〉2

︸ ︷︷ ︸
W b→b′

p

Here, W b→b′

p represents a weighting factor which reflects the
contribution of the quantization noise power around location
k ≈

←−
Wb→b′

r→n (p) in sub-band b to the distortion at location p
in sub-band b′, where

←−
Wb→b′

r→n maps locations in subband b′

of frame fn back to locations in subband b of the reference
frame fr, according to the motion model. Denoting the average
quantization noise power Db

R/ |R| around R by D̄b
r [k] gives∣∣∣δBQ,b′

r→n [p]
∣∣∣2 ≈∑

b

D̄b
r

[←−
Wb→b′

r→n (p)
]
·W b→b′

p (8)

For convenience of implementation, we approximate D̄b
r[k]

as constant over grid blocks Bb
r[i], such that ∪iBb

r[i] span



subband b of the reference frame fr, writing D̄b
r[k] =

Db
r[i]/

∣∣Bb
r[i]

∣∣ for all k ∈ Bb
r[i]. Similarly, we partition each

subband b′ of the predicted frame fn into grid blocks Bb′

n [j],
writing DQ,b′

r→n[j] for the predicted total distortion in grid
block Bb′

n [j] due to quantization distortion in fn. Under these
conditions, equation (8) can be recast as

DQ,b′

r→n[j] ≈
∑

p∈Bb′
n [j]

∑
i,b3
←−
Wb→b′

r→n (p)∈Bb
r[i]

Db
r[i]

W b→b′

p

|Bb
r[i]|

(9)

This might look complicated, but the interpretation is
simple. For each location p in grid block Bb′

n [j], find the
corresponding k in all the sub-bands of the reference frame fr

and add W b→b′

p /
∣∣Bb

r[i]
∣∣ multiplied by the grid block distortion

Db
r[i] to the accumulated distortion, DQ,b′

r→n[j]. In practice, we
work with grid blocks of size 4× 4. More simplifications will
be introduced in III-C.

The distortion due to quantization, in code-block Cβ
n is

readily found by summing the DQ,b′

r→n[j] contributions from
all grid blocks which it contains. The reason for estimating
distortion in grid blocks, rather than directly at the code-block
level, is that this provides a finer description in the event
that frame fn itself becomes a reference frame for motion
compensation in finer temporal levels. It is important to note
that for such frames, Db

r[i] can be a combination of motion
distortion and quantization distortion effects as these frames
are themselves predicted. In this case, we are assuming not
only that quantization and motion compensation errors are
uncorrelated, so that their squared error distortions add, but
also that the motion compensation errors produced at one
level of the temporal hierarchy are uncorrelated with those
produced at the next level. The validity of this assumption may
be questionable, but seems necessary for the development of
a workable distortion estimation strategy.

The derivation above is not specific to any particular motion
model; however, for the purpose of this paper we choose
to use a block-based translational motion model. For such a
model,

〈
W(Sb

k), Ab′

p

〉
can be decomposed into a collection

of polyphase filters, whose coefficients can be squared and
summed to determine values for the weights W b→b′

p , averaged
over various locations1 p, for each possible translational shift.
In fact, the process can be further simplified by recognizing
that

〈
W(Sb

k), Ab′

p

〉
is a separable function of the horizontal

and vertical components of p and k. Our implementation pre-
computes the average values of W b→b′

p for each shift and
stores them in a look-up table. The server also needs to keep
code-block quantization distortions Dβ

n and distortion-length
slope statistics and for all the frames it intends to serve. We
then model the quantization distortion power as uniform over
each code-block, so that Db

r[i] = Dβ
r ·

∣∣Bb
r[i]

∣∣ /
∣∣Cβ

r

∣∣.
1Note that the cyclo-stationary nature of the DWT, introduces a dependence

of W b→b′
p on p, even for constant translational motion, whenever b′ comes

from a higher resolution level than b. However, it is sufficient to use average
values for our distortion estimation process.

B. Contribution Weights Estimation

We turn our attention to PASS-2. Using (9), the quantization
distortion propagated from fr to fn is

DQ
r→n ≈

∑
j∈Pn

∑
p∈Bb′

n [j]

∑
i,b3
←−
Wb→b′

r→n (p)∈Bb
r[i]

Db
r[i]

W b→b′

p

|Bb
r[i]|

where Pn is the set of all predicted grid blocks Bb′

n [j] in
fn. For convenience, we designate the contribution of Db

r[i]
to DQ

r→n by θb
r [i] · Db

r[i]; where θb
r [i] is the grid block

contribution weight and is given by

θb
r [i] =

∑
j∈Pn

∑
p∈Bb′

n [j],
←−
Wb→b′

r→n (p)∈Bb
r[i]

W b→b′

p

|Bb
r[i]|

(10)

Although the last equation looks complicated, the inter-
pretation is simple. θb

r [i] is a contribution weight associated
with each grid block in fr and reflects that grid block’s
quantization distortion contribution to predicted frames. For
a given value of λ, we identify all the predicted grid blocks
Pn of the predicted frame. For each location p in Pn, we
find the corresponding location k in each sub-band of fr and
we add W b→b′

p /
∣∣Bb

r[i]
∣∣ to the corresponding θb

r [i]. Of course,
the accumulation of contributions to the θb

r [i] terms for frame
fr needs to be extended over all target frames which may
be predicted using fr. It is important to mention that for the
case of hierarchical frame arrangement being considered here,
the reference frame itself might be predicted. In this case, our
implementation composes the contribution weights from one
predicted frame to the next.

The contribution weight wβ
r for a code-block distortion

Dβ
r is readily obtained from weighted averaging of the θb

r [i]
contributions for all grid blocks it contains; that is,

wβ
r =

∑
i3Bb

r[i]⊂Cβ
r

θb
r [i] ·

∣∣Bb
r[i]

∣∣∣∣∣Cβ
r

∣∣∣
These code-block contribution weights modify (4) to become

Jλ =
∑
n∈Gs

∑
β∈fn

[(
1 + wβ

r

)
·Dβ

n + λ · |qβ
n|

]
(11)

and the solution for qβ
n , based on (6), becomes

qβ
n =

{
0 if λ > λ∗,β→n

max
{
q | (1 + wβ

n) · λβ
n(q) > λ

}
if λ 6 λ∗,β→n

(12)
where λ∗,β→n = (1 + wβ

n) · λβ
→n.

In PASS-1, we start with wβ
r = 0. In PASS-2 these values

are updated according to the decisions made in PASS-1. Then
values obtained in PASS-2 are used in the subsequent PASS-1
and so on.



C. Motion Compensation

The most straightforward way to perform motion compen-
sation is to apply the motion compensation operator W to
full resolution reconstructed frames. It can be seen from (9)
that the distortion in each sub-band of the reference frame
generally propagates to all sub-bands in the predicted frame.
To reduce the amount of calculation, we propose the use of
the “safe” motion compensation operator WSAFE defined in
[10], which is briefly described here for completeness.

In a D-level decomposition of a frame, we write fd for
all the sub-bands required to reconstruct the d-th resolution;
thus f0 is all sub-bands in f , while fD is the LLD sub-band
alone. We write Hd, 0 ≤ d < D, for the three detail sub-
bands, HLd, LHd, and HHd at the d-th resolution, and AH

for the one-level (2D-DWT) analysis operator that recovers
these sub-bands from fd. Then, the sub-bands of the predicted
frame using “safe” motion compensation can be obtained from

fD
b =WD

a→b(f
D
a )

Hd = AH

[
Wd

a→b(f
d
a )

]
0 ≤ d < D (13)

where Wd is the motion compensation operator with scaled
parameters that operates at the d-th resolution.

For a given sub-band, WSAFE limits sources of distortion to
only sub-bands in resolutions d through D. This allows us to
focus on sources of distortion that are most dominant and at
the same time considerably reduce the calculations required for
(9). In practice, we recursively estimate the distortion in fd of
the source frame from distortions in Hd and fd+1. Moreover,
WSAFE is used only for the distortion estimation process, while
motion compensation itself employs full-resolution motion
compensationW , with the in-band approach described in [10].
We justify this by the need for the client to reconstruct the best
possible video, while a coarse model is sufficient for error
estimation.

IV. EXPERIMENTAL RESULTS

The results presented here are for three test sequences. The
first two are the “crew” and “harbour” MPEG test sequences
and the third is “speedway”2. Only the the Y-component of
the first 49 frames of “crew” and “harbour” sequences is
used. These frames have a resolution of 704 × 576 with a
bit depth of 8 bits. Similarly, only the Y-component of the
first 193 frames of the “speedway” sequences is used. These
frames have have a resolution of 352 × 288 with a bit depth
of 8 bits. Motion complexity for the sequences are simple for
“speedway”, moderate for “crew”, and complex for “harbour”.

All the sequences are compressed to JPEG2000 format us-
ing Kakadu3, employing five levels of wavelet decomposition,
20 quality layers, and a code-block size of 32 × 32. Motion
compensation employs an advanced hierarchical block-based
motion model. Possible grid values range from 128 pixel for
the coarsest field down to 4 pixel. Motion is estimated to 1/4
of a pixel accuracy by employing a 7× 7 interpolation kernel

2http://www.openjpeg.org/samples/, OpenJpeg project homepage.
3http://www.kakadusoftware.com/, Kakadu software, version 5.2.4.

obtained from windowing cubic spline functions. For all the
sequences, the frame rate is 30 frames/second and the rates
given here are for the encoded sub-band samples and encoded
motion vectors; they exclude any headers, and signaling to the
client, etc.

Four methods are compared here: the proposed distortion
estimation method, identified as “APPROX”; the exact distor-
tion method, identified as “EXACT”; the method identified as
“INTRA”, which is to individually optimize each frame subject
to the rate constraint; and the SVC extension of H.264/AVC,
identified as “SVC”.

For “SVC”, the options are as follows. For the “speedway”
sequence, two enhancement layers were used with five lev-
els of medium-grain scalability (MGS) giving a total of 11
quality layers. For the “crew” and “harbour” sequences, three
enhancement layers were used with three levels of MGS giving
a total of 10 quality layers. The “SVC” streams generated had
only one resolution, the highest resolution. Although providing
more resolution and quality layers makes the comparison fairer
as the proposed paradigm can easily provide them; we did
not pursue them for two reasons: adding more layers to an
SVC stream generally reduces its overall performance for a
given bit-rate; and the implementation4 we have consumes
considerable amount of memory and having multiple layers for
704 × 576 sequences can easily exceed PC hardware design
limits. The intra frame period was set to 8 frames and the
search range is 16 integer pixels with 1/4 sub-pixel accuracy.

For the “APPROX” and “EXACT” methods, a K value of
three and three iterations of PASS1-PASS2 are used.

The average MSE expressed in terms of PSNR at various
bit rates for the “crew”, “harbour”, and “speedway” sequences
are shown in Figure 3, 4, and 5, respectively.
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Fig. 3. Performance comparison between the various algorithms for the
“crew” sequence at various bit-rates in PSNR of the average MSE.

For the three test sequences, it can be concluded that the
proposed approximation reduces the quality of the recon-
structed video by anywhere from 0.1 dB to 1 dB compared
to the exact case. This reduction depends on bit-rate and
motion complexity of the sequence with bigger differences

4JSVM version 9.12.2 obtained through SVC from its repository at
garcon.ient.rwth-aachen.de
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Fig. 4. Performance comparison between the various algorithms for the
“harbour” sequence at various bit-rates in PSNR of the average MSE.
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Fig. 5. Performance comparison between the various algorithms for the
“speedway” sequence at various bit-rates in PSNR of the average MSE.

for the case of complex motion and for moderate bit-rates.
It can also be seen that the proposed paradigm matches or
exceeds the performance of “SVC” for the simple-motion
sequence “speedway”; while for the complex-motion sequence
“harbour”, “SVC” outperforms the proposed paradigm by
perhaps up to 2 dB. It should be remembered that for cases
other than “SVC”, the results presented here do not take into
account the size of headers and any needed signaling, which
negatively impact the outcome.

We turn our attention to the benefits of the proposed
approach for a client interested in seeing only one frame. For
such a scenario, both EXACT and APPROX methods reduce to
the INTRA case and therefore only the INTRA case is shown
for all of these three cases. Figure 6 shows the PSNR of frame
10, a frame that belongs to temporal level T0 and not T1 of
the “harbour’ sequence; half of all the frames in the sequence
are in level T0 only. For the “SVC” case, the effective rate
shown in the figure is the sum of the rates for frames 9, 10,
11, 13, 15, and 17 as all these frames contribute to frame 10.
It can be seen that the savings are enormous.

V. CONCLUSION

The proposed paradigm provides better support for scal-
ability and accessibility compared to SVC. This extended
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Fig. 6. PSNR of frame 10 of the “harbour” sequence at various bit-rates for
the INTRA, EXACT, APPROX, and SVC methods.

flexibility might bring slightly better quality for sequences
with simple motion while sequences with complex motion
might suffer by a loss in quality of perhaps 2 dB. For a
client that wishes to browse individual frames during video
playback, the proposed paradigm considerably outperforms
SVC. This is hardly surprising, but underlines the benefits
that may be provided by the proposed approach in interactive
applications, where direct streaming is not the sole objective.
The distortion estimation algorithm that has been introduced
here considerably reduces the calculations required by the
server; however, it also reduces the quality of the reconstructed
video by anywhere from 0.1 dB to 1 dB. The hierarchical
arrangement of frames provides good exploitation of temporal
redundancies for both the proposed method and SVC. More
work is needed to improve the approximations and to provide a
fully realistic implementation, particularly for client signaling
and the client policy.
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