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ABSTRACT
This paper presents a novel measure for identifying strong structure
features, such as edges, from randomness, such as regions predomi-
nated by noise, within an image. The proposed structural measure is
localized in space and scale; for a given scale, it gives values close
to one in the vicinity of strong structures and close to zero in re-
gions predominated by noise. The proposed structural measure is a
primitive operation that can be used in a wide variety of image anal-
ysis techniques to identify regions which has structure; for example,
motion estimation is more meaningful in structured regions than in
regions filled with noise. The first innovation in this work is in con-
verting an image into a ternary feature map that are rather resistant to
noise and changes in illumination. The second is the structural mea-
sure, which is derived from the degree of non-uniformity amongst
the magnitudes of the DFT coefficients obtained over a small win-
dow within the ternary maps. In this work, we show that the pro-
posed structural measure is robust and gives a good indication of the
strength of structure when compared to alternate strategies; more-
over, we show that the computational cost of the proposed structural
measure is reasonable.

Index Terms— Image Analysis, Image Processing, Feature Ex-
traction, Image Texture Analysis

1. INTRODUCTION

Many image processing algorithms can benefit from knowing that
the region being processed has structural features, such as edges
and geometrical shapes. For example, image registration is more
meaningful between two structured regions in the images being reg-
istered. Denoising is another obvious application which stands to
benefit from a knowledge of the structured image regions.

In this paper, we propose a structural feature measure that is lo-
cal in space and scale, returning a value in the range 0 (primarily
noise) to 1 (strongly structured) at each location within each detail
band of a Laplacian pyramid [1]. This is important, because different
scales in a multi-resolution representation reveal different features
and high frequency bands are often quite sparse – i.e., predominantly
noise – while also carrying useful information. The proposed mea-
sure has no dependence on signal strength (e.g., through thresholds)
or assumptions concerning the signal or noise power spectra. The
method can also be applied to image compression formats that are
inherently multi-resolution, such as JPEG2000 [2]. We have found
these to be important features in our work on multi-resolution motion
estimation and motion detection [3, 4]. We are unaware of alternate
measures of structure that possess such features.

This paper introduces two innovations; the first involves repre-
senting each detail band of the image as a ternary feature map. The
proposed ternary feature maps share some concepts with local bi-
nary patterns, first introduced by Ojala et al. [5]. Both approaches
represent the image using a small alphabet, where the value taken
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Fig. 1: A typical response of T [n] along an edge in the image f [n].
The figure also shows some of the intermediate values.

by a given pixel depends on its neighborhood; the resulting set is
somewhat illumination-independent and noise-resistant.

The second innovation of this work is the structural measure it-
self, which involves a Short-Time Fourier Transform (STFT) of the
ternary feature map at each scale, followed by a measure that is in-
spired by the concept of compression coding gain [2, 6]; the idea is
that a large coding gain is indicative of a strongly structured region.
The proposed structure also lends itself to an efficient implementa-
tion.

The rest of the paper is organized as follows: Section 2 explains
the proposed ternary feature maps; Section 3 describes the proposed
structural measure; Section 4 discusses how the structural measure is
extended to multiple resolutions; and Section 5 compares the struc-
tural measure against alternative approaches.

2. TERNARY FEATURE MAPS

In general, the proposed ternary feature map T [n] is calculated from
an image that has its local mean removed; that is, for a given image
f [n], we first estimate the local mean from (Gσ ∗ f)[n] for each
location n in f [n], where Gσ is a symmetric finite impulse response
(FIR) low-pass filter. Then, the proposed ternary feature map T [n]
is calculated from l[n] = f [n]− (Gσ ∗ f)[n]. We can think of l[n]
as the detail band at one level of a Laplacian pyramid, as discussed
in Section 4.

Figure 1 shows a typical response of l[n] = f [n]− (Gσ ∗ f)[n]
along an edge in f [n]. For regions that are dominated by noise,
we expect the mean (Gσ ∗ f)[n] to be the mean of the underlying
signal, not the noise; therefore, l[n] is also dominated by noise, since
the mean (Gσ ∗ f)[n] is removed from l[n].

The ternary feature map T [n] is derived from two quantities,
l+[n] = max{l[n], 0} and l−[n] = min{l[n], 0}, using

T [n] =


1, l[n] > (l+ ∗ hT)[n]

−1, l[n] < (l− ∗ hT)[n]

0, otherwise
(1)
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Fig. 2: Results and alternative approaches for a synthetic image,
where the gray color represent 0. (a) A synthetic image (PSNR =
32dB). (b) Its mean-removed image l[n]. (c) Its ternary feature map
T [n]. (d) A′[n] when ck[n] = c′k[n] and w[p] = 1. (e) A′[n]
when ck[n] = c′k[n] and w[p] as defined in (3). (f) A′[n] when
ck[n] as defined in (4) and w[p] as defined in (3). (g) The image’s
structural measure A[n]. (h) A′[n] when the DCT is used instead of
DFT and w[p] = 1. (i) Detected structure using the IRPR measure
(Subsection 5.1) for a synthetic image that has rings twice as wide
as the image in (a).

where hT[n] is another symmetric low-pass FIR filter. We can think
of (l+ ∗ hT)[n] and (l− ∗ hT)[n] as the local positive and negative
means, that serve as spatially varying thresholds, as shown in Fig-
ure 1. These thresholds help to suppress noise and ringing artefacts
in the neighborhood of strong image features.

Figures 2c and 3b provide examples of ternary feature maps.
The former is derived from a synthetic image, Figure 2a, to which
a small amount of noise has been added (PSNR = 32dB). Figure 2b
shows the mean-removed image l[n] for this synthetic case. The
second example is based on a real image from the Kodak test set,
shown in Figure 3a.

The low-pass filters, Gσ and hT , are design parameters that can
be optimized for the task at hand. In this paper, all filters have sup-
port 7× 7; Gσ is a separable Gaussian filter with σ = 1.5, while hT
is also a separable filter formed from the one-dimensional triangular
transfer functionHT (z) = z−3+2z−2+3z−1+4+3z+2z2+z3.
Both Gσ and hT are normalized such that their DC-gain is 1.

Ternary feature maps preserve strong image features, such as
edges, cleaning most of the noise near these features; for regions
dominated by unstructured noise, the ternary features also lack struc-
ture. Ternary feature maps are rather robust to changes in illumina-
tion and somewhat resistant to noise. For these reasons, ternary fea-
ture maps are interesting in their own right and we have found other
applications for them [3, 4].

3. STRUCTURAL MEASURE

The proposed structural measure A[n] is calculated from T [n]. The
idea is to estimate the structure within a neighborhood Pn of lo-
cation n by taking a Discrete Fourier Transform (DFT) of T [p]
over the samples p ∈ Pn and then evaluating the degree of non-
uniformity amongst the magnitudes of the DFT coefficients. In prac-
tice, Pn = [n1 − H,n1 + H] × [n2 − H,n2 + H], so that a
(2H + 1) × (2H + 1) point DFT is used. The DFT basis func-
tions are pre-weighted using a non-separable raised-cosine weight-
ing function, which helps to avoid directional bias. Specifically, the
DFT magnitude coefficients associated with location n are given by

c′k[n] =

∣∣∣∣∣∣
∑

−H≤p1,p2≤H

T [p+ n]w[p] exp

(
−j 2πptk

2H + 1

)∣∣∣∣∣∣ (2)

where k belongs to the set K, discussed shortly, and the weighting
function w[p] is given by

w[p] =

 1
2
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2
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π

√
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)
, p21 + p22 ≤ (H + 1)2

0, otherwise
(3)

Equivalently, the cosine-weighted DFT coefficients produced at each
location may be interpreted as the output from a Short-Time Fourier
Transform of the ternary feature map.

The setK contains one coefficient from each complex-conjugate
pair of DFT coefficients. K does not include the DC coefficient. We
have found that H = 3 gives a good compromise between locality
and resistance to noise; in this case, the number of elements in K is
24.

The squared magnitude coefficients (c′k[n])
2 may be interpreted

as crude estimates of the local power spectrum associated with the
ternary feature map – actually, these correspond to the periodogram
of the raised-cosine weighted ternary features. It is well known that
the periodogram estimate of the power spectrum of a random pro-
cess is very noisy. With this in mind, we improve the robustness of
the algorithm by averaging four sets of coefficient magnitudes from
nearby locations, yielding

ck[n] =
1

4
·

∑
i,j∈{−1,1}

c′k[n1 + i, n2 + j] (4)

We then form an estimate of the uniformity of the ck[n] values, over
k, given by

A′[n] =

(
1

|K| ·
∑
k∈K

ck[n]

)2/
1

|K| ·
∑
k∈K

(ck[n])
2 (5)

When the transform coefficients ck[n] are roughly equal, we expect
A′[n] to be close to 1; conversely, if the transform coefficients ck[n]
are widely distributed, we expect A′[n] to approach the minimum
value of 1

|K| . We interpret these two cases as unstructured noise
and structured imagery, respectively. This interpretation is motivated
by the notion that the DFT should have a high coding gain (highly
skewed coefficient distribution) for structured content, but no coding
gain (uniform coefficient distribution) for unstructured noise.

The middle row in Figure 2 shows the effect of the various steps
on the A′[n] values. Both Figures 2d and 2e involve no averag-
ing (i.e., ck[n] = c′k[n]). The image in Figure 2e incorporates
the raised-cosine weighting function, whereas Figure 2d is gener-
ated with w[p] = 1; the anisotropic nature of the unweighted results
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Fig. 3: The structural measure at a few scales. (a) Original image. (b) Its ternary feature map. (c) Its structural measure. (d) Its structural
measure at half resolution. (e) Its structural measure at quarter resolution. (f) Its structural measure at one-eighth resolution zoomed by 2.

are revealed by the presence of thicker lines along the vertical and
horizontal features in Figure 2d. The image in Figure 2f incorporates
both averaging and raised-cosine weight; evidently, the result is less
noisy without noticeable loss of spatial resolution.

Figure 4 shows the probability density function (PDF) of A′[n]
obtained experimentally using the Kodak test image set. We notice
that more than 99.9% of the area under the probability curve lies in
the range [0.25, 0.91] of A′[n]. For this reason, we define

A[n] = min

{
max

{
0.91−A′[n]

0.66
, 0

}
, 1

}
(6)

The max and min operators above ensure that the value of A[n]
stays within the interval [0, 1], where values close to 1 indicate strong
structures, while those close to 0 indicate high randomness. This is
our proposed measure for the degree of structure, in the neighbor-
hood of location n. Figure 2g shows this final result for the structural
measure for the synthetic image in Figure 2a. Similarly, Figure 3c
shows the structural measure obtained at each location in the Kodak
test image of Figure 3a.

From an implementation point of view, the costliest step in cal-
culating the structural measure lies in (2), which conceptually in-
volves (2H+1)2 complex multiplications and additions for each ele-
ment ofK.1 Fortunately, however, no multiplications are actually re-
quired to implement the summation in (2), since T [n] ∈ {−1, 0, 1}
and the other two terms (w[p] exp(·)) can be combined into one
term that is indexed by k and p. With this in mind, we need at most
2·|K|·(2H+1)2 real additions per location, each of which can poten-
tially be implemented in low precision fixed-point arithmetic. The
fundamental complexity of a fixed-point addition operation is vastly
lower than that of multiplication. Moreover, T [n] is frequently equal
to 0, so that many of these additions can be skipped.

4. EXTENSION TO MULTIPLE RESOLUTIONS

Since structural features are of different sizes, it is useful to estimate
the structural measure at different resolutions. Here, we employ the

1Generation of the ternary features is very simple, while the total number
of operations in (4) and (5) is only on the order of |K|.
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Fig. 4: Empirically-obtained probability density function of A′[n].
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Fig. 5: The Laplacian pyramid generation in this work. The symbol
↓ 2 denotes downsampling by 2, vertically and horizontally.

Laplacian pyramid shown in Figure 5 to obtain detail bands l(d)[n],
where d = 0, 1, . . .. This figure shows that an image f is pre-filtered
by G0.75 (the same Gσ filter of Section 2 with σ = 0.75). The
purpose of this pre-filtering is to produce g(0)[n] that has its high
frequency filtered in a way similar to all the other g(d)[n], where d >
0; that is, without this step, l(0)[n] would have more high frequency
contents than the other l(d)[n], where d > 0.

Each detail band l(d)[n], referred to as a mean-removed image in
Section 2, can be used to obtained a structural measure at that scale.
Figures 3 and 6 show the structural measure at different scales for
one image from the Kodak test set and one from the Brodatz texture
dataset [7]. At a fine spatial resolution, the structural measure is
rather sparse, as can be seen in Figures 3d and 6b.

5. ALTERNATIVE APPROACHES

Here, we present two alternative approaches for the proposed struc-
tural measure that serve pedagogical reasons as well.



(a) (b)

(c) (d) (e)

Fig. 6: Multiple scales of the structural measure A[n]. (a) The orig-
inal image taken from Brodatz texture dataset. (b) A[n] at full reso-
lution. (c) A[n] at half the resolution. (d) A[n] at quarter the reso-
lution zoomed by a factor of 2. (e) A[n] at one-eighth the resolution
zoomed by a factor of 4.

5.1. Inter-Resolution Power Ratio (IRPR)

One initially appealing alternative to the proposed structural measure
is to exploit the fact that the power spectrum of a typical image rolls
off at least with the square of the frequency, while that of additive
white noise is flat.

We define the IRPR as the ratio of the power of the samples in
l(d)[n] in a region around location n to the power of the samples
in the corresponding region in l(d+1)[n]. Since l(d+1)[n] is from a
coarser scale than l(d)[n], we upsample and interpolate l(d+1)[n] to
the spatial density of l(d)[n]; we write l̃(d+1)[n] for this upsampled
and interpolated l(d+1)[n]. The IRPR r is then defined by

r[n] =
∑

p∈Rn

(
l(d)[p]

)2/ ∑
p∈Rn

(
l̃(d+1)[p]

)2
(7)

where Rn is some region around location n; here, we use a 5 × 5-
pixel region centered around location n.

Figure 7 shows the conditional PDFs of the IRPR given that the
region under consideration is structured, denoted by P (r|S), and
is unstructured, denoted by P (r|N ). The PDF for the structured
case P (r|S) is obtained from the Kodak test image set, from regions
that have their local variance higher than a certain small threshold.
The unstructured case P (r|N ) is obtained from an empty image
filled with white Gaussian noise. Our IRPR measure then becomes
estimating the conditional probability of being structured given the
observed IRPR, P (S|r); that is,

P (S|r) = P (r|S)
P (r|S) + P (r|N )

(8)

assuming that P (S) = P (N ) = 1
2

, which is a reasonable and
commonly-applied assumption.

While the IRPR measure works reasonably well for a synthetic
image, as shown in Figure 2i, it performs poorly for a real image, as
shown in Figure 8. This poor performance is due to the noise being
non-stationary non-white in real images; noise statistics in real im-
ages are influenced by demosaicing, Wiener filtering (used in most
image capturing devices to reduce noise), among other reasons. This
noise is hard to model and, more importantly, does not have the re-
quired spectral properties for this approach to work. Another rea-
son is that the IRPR measure for a given scale depends on the next
coarser scale; this reduces the spatial resolution of the IRPR measure
compared to the proposed structural measure.
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Fig. 7: Empirically-obtained probability density function for IRPR
for both structured regions S and regions predominated by noiseN .
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Fig. 8: A comparison between the structural measure and the power
ratio. (a) The original image. (b) Its structural measure. (c) Its IRPR
measure.

5.2. Discrete Cosing Transform instead of the DFT

Here, we consider the use of the Discrete Cosine Transform (DCT)
in place of the DFT, leaving other aspects of the proposed struc-
tual measure intact. The DCT alternative is initially appealing, be-
cause it avoids complex arithmetic, including complex magnitude
operations. However, this approach has the disadvantage of being
anisotropic. This can be explained by remembering that the DCT of
a signal is equivalent to the DFT of another signal that is obtained
by symmetric extension of the first signal. In two dimensions, sym-
metric extension changes the orientation of non-vertical and non-
horizontal features, creating artificial angles. Figure 2h shows A′[n]
when the DCT is used instead of the DFT in (2); the loss of isotropy
should be apparent.

6. CONCLUSIONS

In this work, we have presented two novel and innovative ideas:
the ternary feature maps and the structural measure. Ternary fea-
ture maps are images whose samples take on values from the set
{−1, 0, 1}; they preserve the predominate features of the original
image while being somewhat robust to changes in illumination and
noise. The structural measure utilizes the ternary feature map to pro-
duce a multi-scale soft isotropic measure of the strength of structure
in the original image. The proposed method for the structural mea-
sure works better than alternative approaches. We expect a wide
variety of applications to benefit from both the ternary feature maps
and the structural measure.
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