
INTER-FRAME PREDICTION USING MOTION HINTS

Aous Thabit Naman, Rui Xu, and David Taubman

School of Electrical Engineering and Telecommunications,
The University of New South Wales, Australia.

ABSTRACT

We recently proposed a novel approach that employs motion hints
for inter-frame prediction. Motion hints are a loose and global de-
scription of motion communicated as metadata; they specify mo-
tion but they leave it to the client/decoder to find the exact locations
where motion is applicable. This work proposes a multi-scale ap-
proach for identifying these exact locations, which are then used
with the available reference frames to generate an inter-frame pre-
diction. The proposed approach is localized and robust to noise and
illumination changes. The scheme of this work is applicable to close-
loop prediction, but it is more useful in open-loop prediction scenar-
ios, such as using prediction in conjunction with remote browsing
of surveillance footage, communicated by a JPIP server. We show
that, with reasonably accurate motion, it is possible to produce good
inter-frame predictions visually and in terms of PSNR.

Index Terms— Teleconferencing, Video Surveillance, Video
Signal Processing, Image Communication, Motion Compensation

1. INTRODUCTION

In conventional video coding schemes, such as H.261 to H.265 and
MPEG1 to MPEG4, the encoder specifies precisely how to construct
a predictor and which reference frames to use. This is sub-optimal
for interactive applications, because, in such applications, it is useful
for the client to use other frames as references; these other frames are
obtained from browsing forward, backward, zooming in, etc., and
can potentially be of higher quality.

To address these shortcomings, we propose the use of motion
hints; a motion hint is a reasonably-accurate description of motion
but with a loose description of where it is applicable. Motion hints
are communicated as metadata associated with a video sequence; for
example, tracking metadata used in surveillance footage implicitly
communicates motion hints. A motion hint, in this case, is some
geometrical shape (we use a quadrilateral in this work) that encloses
an object and tracks its movement across many frames of the video
sequence.

Motion hints provide a global description of motion over specific
domains; for example, the domain for a tracking motion hint is any
region that includes the object being tracked. The motion hint is
global to the extent that the domain is included in many (perhaps
all) frames, enabling the client to predict a given object from any
frame in its cache that contains the object. We first proposed the use
of metadata to communicate motion information in [1], where it is
employed in the context of JSIV [2].

The challenge in the proposed approach is to find the subset of
the domain, whose motion is described by a motion hint; we refer to
this as the valid region for the motion hint. In our earlier work [1],
we used pixel matching in the image domain to find the valid re-
gion. Such an approach is not ideal because it is sensitive to noise
and changes in illumination. In this work, we employ a multi-scale
approach that uses the Laplacian pyramid. In addition to increased
robustness to noise and illumination changes, the method proposed
here can deduce the valid region of a motion hint within one frame,

using as little as one other reference frame, although additional ref-
erence frames help. By contrast, the approach in [1] uses exactly 2
reference frames. The proposed algorithm is also localized, need-
ing only local data to make its decisions, which is useful for parallel
implementation.

There are many applications for the proposed approach. In one
example, considered in this work, a JPIP server [3, 4] might choose
either to send every frame from a surveillance footage or to send
every other frame, along with motion hints that a client can use to
predict the missing frames. Another application is frame rate up-
sampling (FRUS) [5, 6]. Our work stands out from conventional
FRUS techniques in that, in our work, the client has the motion vec-
tors for the frame being predicted but does not have the exact region
where this motion is applicable, while in conventional FRUS, the
client/decoder has to estimate these motion vectors.

Fundamentally, the problem addressed by this paper can be un-
derstood as that of separating foreground from background regions,
where the foreground and background motions themselves are given
– these are the motion hints. In the context of closed-loop video
coding, Orchard [7] and Kim et al. [8] also proposed methods that
can be used to partially segment frames based on multiple candidate
motions. A key distinction in our case is that the valid regions are
evaluated at the reference frames, rather than the predicted frame
itself; this allows us to assemble evidence from multiple reference
frames. Foreground object detection in video has also received con-
siderable attention from researchers – see [9,10] for recent examples.
In our problem, however, the foreground/background separation pro-
cess must be carried out within a decoder, using only the reference
frames, which are themselves corrupted by compression artifacts.

2. METADATA, MOTION HINTS, AND PREDICTION

In this work, each frame has associated metadata. To keep things
simple, we choose a video sequence which consists of a single
tracked object; the metadata associated with each frame communi-
cates a motion hint for the foreground object and another for the
background region. Each motion hint is represented by a quadri-
lateral that explicitly identifies the domain of the hint within each
frame1. This can be extended to any number of potentially overlap-
ping domains, quadrilateral or otherwise.

We write DFk and DBk for the foreground and background do-
mains within frame fk. We also write vFk [n] for the likelihood that
point n belongs to the foreground motion’s valid region (i.e., the ob-
ject being tracked). Ideally, vFk [n] equals 1 when point n belongs
to the foreground and 0 otherwise, but we allow vFk [n] to take other
values in the range [0, 1] to reflect the degree of confidence associ-
ated with our inferences. Obviously, vFk [n] = 0 for all n /∈ DFk .
We can define a similar quantity, vBk [n], to represent the likelihood
that point n belongs to the background’s valid region. In the simple
setup of this work, where there is only one foreground object, the

1The background quadrilateral covers the entire frame.
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Fig. 1: Mapping foreground and background domains.

background likelihood is derived using vBk [n] = 1 − vFk [n]. Sec-
tion 3 elaborates on the determination of vFk [n].

In this work, each quadrilateral domain is split into two tri-
angles and the associated motion information is derived from the
affine transformation between corresponding triangles in succes-
sive frames. Richer models could be explicitly communicated, so
as to describe complex motion over the foreground and/or back-
ground domains, but here we restrict our attention to the affine
flows implied by the quadrilateral vertices. In any event, we write
WFk→l = W(DFk ,DFl ) for the overall motion compensation op-
erator that maps locations within the domain DFk in frame fk to
locations within the corresponding domain DFl in frame fl.

To generate a prediction f→p for frame fp, we map two refer-
ence frames fr , where r ∈ {1, 2}, and their foreground likelihoods
vFr to the coordinates of frame fp using their respective foreground
mapping operatorsWFr→p to obtain fFr→p and vFr→p. We also map
the reference frames fr and their background likelihoods vBr using
their respective background motion operatorsWBr→p to obtain fBr→p
and vBr→p. Figure 1 shows some of the mappings used here.

A foreground predictor fF→p for frame fp is obtained from a
weighted average of the foreground predictions, as follows

fF→p[n] =

∑
r∈{1,2}

(
δ + vFr→p[n] · fFr→p[n]

)∑
r∈{1,2}

(
δ + vFr→p[n]

) (1)

where δ is a small positive value whose purpose is only to ensure
that the (1) is well-defined everywhere, and all computations are per-
formed point-wise at each location n. A background predictor fB→p
for frame fp is similarly obtained.

The idea in forming an overall prediction for fp, denoted by
f→p, is to prefer the foreground as long as it has high likelihood.
Accordingly, we define vF→p[n] = maxr∈{1,2}{vFr→p[n]}, and form
f→p as follows:

f→p [k] = fF→p [k] · vF→p[k] + fB→p [k] ·
(

1− vF→p[k]
)

(2)

3. FOREGROUND LIKELIHOOD ESTIMATION

3.1. Image Domain Foreground Likelihood Estimation
Here, we review the image domain method from [1], before dis-
cussing the proposed multi-scale approach. The foreground likeli-
hood is estimated at each reference frame. Here, we consider esti-
mating vF1 for reference frame f1 using two other reference frames,
f0 and f2. The basic idea here is that location n belongs to the fore-
ground if the predictor obtained using the foreground motion model
produces a better estimate for that location than the predictor ob-
tained using the background model. Specifically, we define two er-
rors:

DB[n] = min
{

(f1[n]− fB0→1[n])2, (f1[n]− fB2→1[n])2
}

DF [n] = (f1[n]− 1
2
fF0→1[n]− 1

2
fF2→1[n])2 (3)

Then, we set v′1[n] to 1 whereverDF [n] ≤ DB[n], and 0 otherwise.
Finally, vF1 is obtained by subjecting v′1 to a 5× 5 uniform low-pass
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Fig. 2: Laplacian pyramid used in the multiscale approach. ↓ 2
represent down-sampling by 2 in each direction.

filter (moving average) to reduce sensitivity to noise. Of course, this
estimate is only evaluated inside DF1 , since vF1 is zero elsewhere.

Equation (3) can be easily extended to exploit color information
by replacing each scalar f [n] with a color vector f [n]; the square
operation in (3) becomes the square of the Euclidean length.

3.2. Multiscale Foreground Likelihood Estimation
To estimate the foreground likelihood vF1 , the multiscale approach
needs only one other reference frame, say f2, although Section 3.2.3
shows how the evidence from additional reference frames can be in-
cluded into the estimated likelihood. The multiscale approach can
also estimate vF1 using the foreground motion information alone
(i.e., without reference to the background motion), although Sec-
tion 3.2.4 shows how the evidence from multiple motion models can
be combined to improve vF1 .

The multi-scale approach is based on a Laplacian pyramid repre-
sentation of f1 and fF2→1, as shown in Figure 2. Unlike the pyramid
proposed by [11], the one used here cannot readily be used to re-
construct f1 and fF2→1 from their detail images f (d)

1 and fF,(d)2→1 , but
requires fewer filtering operations. In this work, hσ is a 7× 7 Gaus-
sian low-pass filter with σ = 1.5, which admits a very small amount
of aliasing in exchange for a small region of support.

We estimate the foreground likelihood progressively, starting
from a coarse scale and moving to the finest scale of the pyramid. At
a coarse scale, small mismatches between f (d)

1 and fF,(d)2→1 have little
effect; therefore, it is quite possible that the whole domain is marked
as foreground. As we progress from one scale to the next, finer de-
tails are discovered and the likelihood estimates are combined, us-
ing the method described in Section 3.2.2. To begin, though, we
describe the generation of foreground likelihood estimates for one
scale in isolation.

3.2.1. Intra-Scale Foreground Likelihood Estimation
We follow a probabilistic approach to foreground likelihood estima-
tion. Let F denote the true foreground region. For any given scale
d, we estimate a log-likelihood ratio l(d)[n], representing the ratio
between the probability that n belongs to F and the probability that
n belongs to its complement F , conditioned on a set of observations
Θ(d). That is,

l(d) = log
P{F|Θ(d)}
P{F|Θ(d)}

= log
P{Θ(d)|F}
P{Θ(d)|F}

(4)

The second equality is based on the reasonable and widely used as-
sumption that P{F} = P{F}. The set of observations Θ(d) are:

Ternary Feature Maps: A ternary feature map T (d)[n] is derived
from two quantities, f (d)

+ [n] = max{f (d)[n], 0} and f
(d)
− [n] =

min{f (d)[n], 0}, using

T (d)[n] =


1, f (d)[n] > (f

(d)
+ ∗ hT)[n]

−1, f (d)[n] < (f
(d)
− ∗ hT)[n]

0, otherwise
(5)

where hT[n] is a symmetric low-pass FIR filter; here, we set hT =
1.5hσ , σ = 2. The ternary feature maps are discussed in more detail
in [12]. This step generates T (d)

1 and TF,(d)2→1 from f
(d)
1 and fF,(d)2→1 .



Structural Measures: We employ a novel measureA(d)[n] of the
local structure at each location n in a specific detail image f (d)[n],
whose values range from 0 (unstructured “noise”) and 1 (highly
structured image features). A(d)[n] is derived from the degree of
non-uniformity amongst the magnitudes of the DFT coefficients ob-
tained over a small window centered about n, within the ternary fea-
ture map. A much more comprehensive discussion of this structure
measure and its properties is the subject of [12].

Quantization, typical in lossy compression, produces some arti-
facts which can have their own structural characteristics. We make
the structural measure more robust to these artifact by burying them
in noise that has a magnitude comparable to the expected amount of
quantization. Specifically, for a given detail image f (d) that suffers
from quantization noise with variance σ2

q , we calculate a noisy detail
image f (d)

n using

f (d)
n [n] =


f (d)[n], |f (d)[n]| ≥ ∆n

U(0, σ2
n)[n], ∆n ≥ |f (d)[n]| > 0

0, otherwise
(6)

Here, U(0, σ2
n) is a uniformly-distributed pseudo-random number,

over the interval [−∆n,∆n], where ∆n =
√

3σ2
n, and the variance

σ2
n is set to αnσ2

q . We find that αn = 3 gives a good compromise
between removing artifacts and keeping relevant features, although
values ofαn as small as 1 can also give acceptable results. We are in-
terested in frames that have been compressed using JPEG2000 (e.g.,
for JPIP streaming applications); in this setting, σ2

q can be derived
from the quantization parameters and number of discarded bit-planes
for wavelet subbands whose passbands overlap that of the Laplacian
detail band in question. For the results presented here, σ2

q is derived
experimentally.

The noisy detail images f (d)
n,1 and fF,(d)n,2→1 are used to generate

noisy ternary feature maps, which are then used to generate struc-
tural measures A(d)

1 and AF,(d)2→1 . From these, we obtain the derived
quantities Aµ, which identifies locations that are highly structured
in both frames, and A∆, which identifies the structural dissimilarity
between the frames; specifically,

Aµ[n] = A
(d)
1 [n] ·AF,(d)2→1 [n], A∆[n] =

A
F,(d)
2→1 [n]

A
(d)
1 [n]+A

F,(d)
2→1 [n]

(7)

Shape Factor: We calculate a cross-correlation ρ(d)[n] between
corresponding regions in the ternary feature maps, using

ρ(d)[n] =

∑
j∈Rn

(T
(d)
1 [j] · TF,(d)2→1 [j])√∑

j∈Rn
(T

(d)
1 [j])2 ·

∑
j∈Rn

(T
F,(d)
2→1 [j])2

(8)

where Rn is a small region around location n; we use a disc of
radius r = 3. Since intensity information has already been removed
from the ternary feature maps, we think of ρ(d)[n] as an indication
of shape similarity between the two frames in the neighbourhood of
n.

Power Ratio: A power ratio M (d)
∆ [n] is calculated using

M
(d)
∆ [n] =

∑
j∈Rn

(f
F,(d)
2→1 [j])2∑

j∈Rn
(f

(d)
1 [j])2 +

∑
j∈Rn

(f
F,(d)
2→1 [j])2

(9)

This ratio gives an indication of how similar the power are in the two
detail images.

Now, we are in a position to estimate the log-likelihood ratio,
which is given by

l1 = log
P{Θ|F}
P{Θ|F}

= log
P{ρ,M∆, A∆, Aµ|F}
P{ρ,M∆, A∆, Aµ|F}

(10)

where the superscript (d) has been removed for brevity. To re-
duce complexity, we decompose the joint probability function

in the numerator P{ρ,M∆, A∆, Aµ|F} into the multiplication
P{ρ|M∆, A∆, Aµ,F}, P{M∆|A∆, Aµ,F}, P{A∆|Aµ,F}, and
P{Aµ|F}. We similarly decompose the denominator. Then,
we remove the conditionally independent terms, and assume that
P{Aµ|F} = P{Aµ|F}, to get

l1 ≈ log
P{ρ|Aµ,F}
P{ρ|F}︸ ︷︷ ︸
shape

+ log
P{M∆|Aµ,F}
P{M∆|Aµ,F}︸ ︷︷ ︸

power

+ log
P{A∆|F}
P{A∆|F}︸ ︷︷ ︸

dissimilarity
(11)

The log-likelihood ratio becomes a combination of three terms. The
shape term is sensitive to geometric features such as edge orienta-
tion, being based on the ternary features, and hence independent
of the level of image contrast. The probability density functions
(PDFs) P{ρ|Aµ,F} and P{ρ|F} are obtained experimentally us-
ing the Kodak test set. To collect statistics for F , we match each
image with noisy and slightly shifted copies of itself, while for F
we match each image with all other images in the set.

The power term is sensitive to differences in the amount of local
image contrast, between the detail images, but relatively insensitive
to shape. The dissimilarity term is sensitive to differences in the
degree of apparent structure between the detail images. The PDFs
for each of these terms are also derived experimentally.

3.2.2. Inter-Scale Foreground Likelihood Propagation

We combine the intra-scale log-likelihoods l(d)1 progressively, start-
ing from the coarsest resolution and working towards the finest,
forming combined log-likelihood ratios s(d)

1 , according to

s
(d)
1 = l

(d)
1 + max{1− 1.5 ·A(d)

µ , 0} · (s(d+1)
1 )↑2 (12)

where (·)↑2 denotes upsampling by 2 and interpolation using a 7×7
cubic spline interpolator. The idea here is that if the scale under con-
sideration has enough evidence (high Aµ value), then we can ignore
the coarser resolution information; otherwise, we accumulate the in-
formation (multiply the probabilities) from the lower resolution.

The overall foreground likelihood for frame f1 is obtained from
s

(0)
1 using a simple transducer function, given by

vF1 [n] =


0, s

(0)
1 [n] ≤ 0

s
(0)
1 [n]/5, 5 ≥ s(0)

1 [n] > 0

1, s
(0)
1 [n] > 5

(13)

3.2.3. Extension to Multiple Components and Multiple Frames
Suppose the foreground likelihood for f1 can be estimated using two
other references frames, say f0 and f2. In this case, we have two sets
of observations Θ

(d)
0 between fF,(d)0→1 and f (d)

1 and Θ
(d)
2 between

f
F,(d)
2→1 and f (d)

1 ; therefore, the log-likelihood ratio is

l
(d)
Θ0,Θ2

= log
P{F|Θ(d)

0 ,Θ
(d)
2 }

P{F|Θ(d)
0 ,Θ

(d)
2 }

= log
P{Θ(d)

0 ,Θ
(d)
2 |F}

P{Θ(d)
0 ,Θ

(d)
2 |F}

(14)

Treating Θ
(d)
0 and Θ

(d)
2 as independent observations,

l
(d)
Θ0,Θ2

= log
P{Θ(d)

0 |F} · P{Θ
(d)
2 |F}

P{Θ(d)
0 |F} · P{Θ

(d)
2 |F}

= l
(d)
Θ0

+ l
(d)
Θ2

(15)

Evidently, this approach can be extended to any number of reference
frames and/or color components. In practice, we sum the intra-scale
log-likelihoods before combining them.

3.2.4. Including Background Information
For the case of a single foreground object considered in this work,
we have F = B. For each color component of each frame, the
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background motion hint can provide a new set of observation. Con-
sider the background observations, Θ

(d)
B , obtained between a pair

of reference frames for which the foreground observations are Θ
(d)
F .

Following the same line of argument as before, we have

l
(d)
ΘF ,ΘB

= log
P{Θ(d)

F |F} · P{Θ
(d)
B |F}

P{Θ(d)
F |B} · P{Θ

(d)
B |B}

= l
(d)
ΘF
− l(d)ΘB

(16)

where l(d)ΘB
= P{Θ(d)

B |B}/P{Θ
(d)
B |F} = P{Θ(d)

B |B}/P{Θ
(d)
B |B}.

Due to occlusion, special care should be exercised when there
are two or more observations for the background. Occluded regions
in the background have a negative log-likelihood, which can be mis-
leading. With this in mind, if any background log-likelihood value
is negative, we replace it with the smaller of 0 and the largest back-
ground log-likelihood value.

l
(d)
ΘB

[n] =


l
(d)
B1 [n] + l

(d)
B2 [n], l

(d)
B1 [n], l

(d)
B2 [n] ≥ 0

max{l(d)B1 [n], l
(d)
B2 [n]}, l

(d)
B1 [n] · l(d)B2 [n] < 0

2 ·max{l(d)B1 [n], l
(d)
B2 [n]}, l

(d)
B1 [n], l

(d)
B2 [n] < 0

(17)

In practice, we subtract the background log-likelihoods from the
intra-scale log-likelihoods before combining them.

4. RESULTS

Here, we consider a JPIP server, serving a video sequence. For a
given data rate, the server can send every frame to a client; we iden-
tify this option as “III.” Alternatively, the server can send every other
frame at a better quality, letting the client predict the missing frames.
The client can use the image domain method of Section 3.1, identi-
fied as “IPI-Old.” Alternatively, the client can use the multiscale
method of Section 3.2, either with or without the background mo-
tion model, identified as “IPI-NewBack” and “IPI-New.” All color
components are used in all the approaches. For all prediction sce-
narios, frames f2i, are delivered while frames f2i+1 are predicted.
Foreground likelihoods are generated for each reference frame f2i,
using the surrounding reference frames f2i−2 and f2i+2.

(a) (b)

(c) (d)

Fig. 5: Prediction using the IPI-NewBack method. (a) Predicted
foreground object and its surrounding region at frame PSNR of
around 39dB from the “book” sequence. (b) Original region at full
quality. (c) One of the foreground likelihoods used in prediction. (c)
The other likelihood.

We consider two video sequences, “book” and “synthetic”. Both
videos are 1024 × 768 compressed into JPEG2000 using Kakadu2

to have 5 resolutions, 20 quality layers, and 32 × 32 codeblocks.
The “book” is a real color sequence in YUV420 format shot at
25 frames/s; we are using 51 frames only. “synthetic” is a syn-
thetic grey-scale sequence; we are using 45 frames and assuming
25 frames/s. In both sequences, the foreground object undergoes an
affine motion. All results are reported in terms of luminance PSNR.
The stated data rates include all encoded data but do not include
JPEG2000 headers; moreover, the small cost of the quadrilaterals
used to communicate the tracked foreground object is ignored – this
is interpreted as tracking metadata that would be communicated for
other reasons in a surveillance application.

Figures 3 and 4 show the performance of the various schemes
for the “book” and “synthetic” test sequences. It can be seen that
using prediction produces the best results up to around 45dB for the
“book” and 39dB for “synthetic”, beyond which it is better to send
independently coded frames. It can also be seen that “IPI-NewBack”
performs better than the other methods; especially, against “IPI-
Old,” which was proposed in our earlier work [1]. “IPI-New” also
outperforms “IPI-Old,” even though it does not use the background
motion hint to determine the foreground likelihood.

Figure 5 shows predicted regions using “IPI-NewBack” from the
“book” sequence when the quality is around 39dB. It can be seen that
for the “book” sequence the quality is good.

5. CONCLUSIONS

In this work, we have demonstrated that using motion hints can pro-
duce good predictions if the motion can be described by these hints.
These motion hints can be communicated using metadata. The pro-
posed multi-scale approach works better than an earlier image do-
main approach; it is also more flexible in that it can utilize observa-
tions from other frames, other color components, and backgrounds.
We find that the foreground likelihood estimates improve with the
availability of more observations. In the context of browsing surveil-
lance footage using a JPIP server, the proposed method can produce
a better browsing experience without needing extra bandwidth.

2Kakadu Software ver. 7.1, http://www.kakadusoftware.com/

http://www.kakadusoftware.com/
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