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Abstract—Experimental results and the latest standards have
proved that segmentation based video coding systems can outper-
form the traditional block-based video coding systems. However,
this approach requires the simultaneous estimation of both the
shape and motion of moving objects in a video scene. In most of
the cases neither the shape nor the motion are known initially.
Another critical aspect of this tightly-coupled relationship is
that inaccurate motion estimation may cause poor segmenta-
tion and erroneous segmentation may negatively impact motion
estimation. While some of the existing approaches require user
intervention and some use clues such as depth, color or occlusion
to separate the foreground from the background, we propose
to use motion reliability information for this purpose. This is
because the ingredients necessary for the calculation of motion
reliability are the by-product of block-based motion estimation
and compensation between the reference frames. Therefore, they
require very little or no increase in the computational overhead.
In this paper, we explore several motion segmentation initializa-
tion strategies based on motion reliability. The performances of
these initialization approaches are investigated, in terms of the
PSNR, for the predicted intermediate frames.

I. INTRODUCTION

In traditional video coding, motion estimation and compen-
sation play crucial roles in granting high compression gains.
Spatially adjacent pixels are grouped into blocks that are
predicted via equally-shaped blocks that are to be found in the
previously-decoded frames. However, the adaptation of block
shapes can significantly improve the final coding performance
since it is possible to match the blocks to the objects in
the scene. This adaptation partially mitigates the compression
inefficiency derived from the unnatural division of the image
to be coded into square or rectangular blocks.

Recent video coding standards allow the adoption of block
partitioning involving variable sized blocks that can be adapted
according to the rate-distortion performance on the current
frame. As an example, the H.264/AVC standard [1] supports
several types of block partitions from 4× 4 to 16× 16 pixels.
More recently, the HEVC [2] standard allows prediction blocks
sized up to 64 × 64 pixels. Careful partitioning of motion
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blocks in the vicinity of object boundaries represents a crude
yet important way of segmenting the motion vector field into
disjoint regions, with a smooth (typically constant) motion
model within each block [3-5].

A more flexible partitioning can be obtained via segmen-
tation. The possibility of characterizing individual objects in
a coded scene was standardized within the MPEG-4 video
coding standard [6], but it was never widely adopted and so
far, few coding systems take full advantage of the object-
oriented coding tools offered by MPEG-4. Building on the
idea proposed in [7], Tagliasacchi et al. [8] proposed a
motion estimation algorithm using a quadtree structure which
produces a region based motion representation. A prune-merge
scheme is used to segment the input image into regions. Blocks
characterized by the same motion model are grouped together
in order to reduce the amount of bits allocated to motion.
In the pruning phase each 16 × 16 block is partitioned into
sub-blocks optimally in a rate-distortion sense. While in the
merging phase blocks representing the same moving object
are represented by the same motion vector i.e. these blocks
are merged into a single block.

In [9] an implicit block segmentation approach is proposed
where segmentation is performed on the difference of the
two predictors. This segmentation is based on the fact that
for a 16 × 16 block each predictor may reduce the matching
error non-uniformly inside that block. Their approach showed
encouraging results for the Foreman sequence where illumina-
tion mismatches are not shown. Milani et al. [10] proposed a
segmentation-based video coding system that partitions each
frame into arbitrarily-shaped segments for a more effective
motion compensation. Their scheme has shown a significant
improvement (up to 4 dB) with respect to the H.264/AVC
standard depending on the amount of motion in the sequence
and on the size of the generated segments.

A novel approach was proposed in [11] that uses motion
hints for inter-frame prediction. Motion hints provide a global
description of motion over specific domains. Fundamentally
this is related to the segmentation of foreground from back-
ground regions where the foreground and background motions
are the motion hints. The appealing thing about motion hints



(a) Ri (b) Rj

Fig. 1. The two reference frames of the Foreman sequence used herein as a
running example.

is that they are continuous and invertible, even though the
observed motion field for a frame will be discontinuous
and non-invertible. It has been shown that, with reasonably
accurate motion, inter-frame predictions with good subjective
quality and high PSNR can be generated [12].

Leveraging on the promising results shown by
segmentation-based video coding and inter-frame prediction
using motion hints, a bi-directional segmentation-based motion
compensated prediction paradigm that employs motion hints
has been developed. In this approach each reference frame
is partitioned into arbitrarily shaped foreground-background
regions based on motion and thereby their motion hints are
generated. These segmented foregrounds and backgrounds
are then projected onto the current frame and predictions
for its foreground and background are formed. Finally,
by fusing the predictions through a weighted scheme, a
prediction of the current frame is generated. However to
function properly, this approach requires an initial estimate
of the foreground-background shapes so that the algorithm
can gradually refine these initial shapes through successive
motion estimation and compensation stages and produce
highly accurate foreground-background segmentation and
motion hints.

In [13] a robust bi-layer segmentation algorithm to extract
moving objects from videos captured by hand-held cameras
was proposed. This approach finds clues from depth and
motion to estimate camera configurations and then can warp
one frame against its reference frame. The difference between
the reference frame and the warped version of it acts as the
initial segmentation mask. Xiong et al. [14] used forward and
backward occlusion maps generated by camera motion to find
foreground and background seeds. Then an interactive image
segmentation algorithm was used to separate the foreground
from the background using those seeds.

In this paper, we generate the foreground-background seeds
based on motion reliability information and then by cluster-
ing the reliable motion vectors. A major advantage of this
approach is that the ingredients necessary for determining
if the estimated motion of a block is reliable or not are
the by-product of the block-based motion estimation and
compensation procedure between the reference frames. Hence
only a small increase in the overall computational overhead

Fig. 2. Clustered reliable MVs and the foreground-background seeds over
the Foreman sequence.

is required for our segmentation based inter-frame prediction
paradigm. In the work presented herein we measure the
performance of a number of initialization approaches in terms
of the PSNR for the predicted intermediate frames.

The rest of this paper is organized as follows: in section
II we describe the segmentation based inter-frame prediction
paradigm in brief. Section III contains descriptions of the
considered initialization approaches. The prediction perfor-
mance of the segmentation based prediction algorithm over
different video sequences when using the seeds produced by
different initialization approaches is then investigated. Finally,
in section V, we present our conclusions from these results.

II. SEGMENTATION-BASED INTERMEDIATE FRAME
PREDICTION PARADIGM

The prediction architecture has three main parts: the first
part performs the forward foreground-background motion seg-
mentation, the second one performs the backward foreground-
background motion segmentation and the third part generates
the prediction of the current frame by projecting these fore-
grounds and backgrounds, computed in the previous steps, on
to the current frame. In the following subsections, these parts
are discussed briefly.

A. Forward Motion Segmentation
In the bi-directional motion estimation setting the previous

and future reference frames are denoted by Ri and Rj respec-
tively herein. A typical example of them is shown in Figure 1.

1) Initialization: The initial foreground-background shapes
work as seeds for the actual foreground-background regions.
Given all the blocks of Rj each of the addressed initial-
ization approaches produces a set of blocks that have reli-
able estimated motion. The reliable motion vectors are then
clustered into groups where the blocks corresponding to the
motion vectors belonging to the same group together form
the foreground-background seeds. This is shown in Figure
2. How each approach finds its own set of reliable blocks
and the dependency of our inter-frame prediction approach
on distinctive enough foreground-background seeds will be
described in detail in Sections III and IV respectively.



(a) Prediction error due to
M

(Ri→Rj)

1 compensation
(b) Prediction error due to
M

(Ri→Rj)

2 compensation

Fig. 3. Forward motion compensated prediction errors.

(a) Region 1 of Rj (b) Region 2 of Rj

Fig. 4. Improved foreground-background segmentation for Rj . Some super-
pixels are common to both the regions e.g. inside the hat of the Foreman;
both motion models compensated their motion very well. Some super-pixels
are missing from both the regions e.g. the left portion of the hat’s rim; here
the prediction errors from both the models are higher than an error tolerance
threshold.

2) Shape Refinement: Having the initial foreground-
background shapes, it is possible to estimate the optimal
6-parameter motion models i.e. the affine motion models
associated with these shapes. And once these initial values of
the forward motion hints i.e. of M

(Ri→Rj)
1 and M

(Ri→Rj)
2

are known, motion compensated predictions of Rj can be
generated by warping Ri using these hints. In Figure 3, the
existence of two predominant motions between Ri and Rj can
be detected by observing that one motion model compensates
the motion in part of the frame while the other one fails
there and vice-versa. The precise location and boundary of
such regions can be estimated with the help of a color-
based segmentation of Rj that partitions Rj into super-pixels.
The performance of each motion model in compensating the
motion within each super-pixel is then investigated and finally
the super-pixels are grouped into homogeneous motion model
groups. This is shown in Figure 4.

3) Iterative Motion Estimation-Shape Refinement: The pro-
posed approach adopts an iterative 2-step strategy where, in
the first step, the motion hints of the available shapes are
estimated and used to generate motion compensated prediction
errors. In the next step these prediction errors are used to
group the super-pixels of Rj into homogeneous motion model
groups and thereby refine the shapes. The approach toggles
between these 2 steps until the motion segmentation becomes
stable. Along with the prediction errors, an estimate of the

(a) Region 1 of Rj (b) Region 2 of Rj

Fig. 5. Converged foreground-background segmentation for Rj .

(a) Region 1 of Ri (b) Region 2 of Ri

Fig. 6. Converged foreground-background segmentation for Ri.

smoothness of the motion hint fields is used to regulate this
optimization stage. The outputs of this iterative multi objective
approach are the converged forward motion hints as well as
the shapes shown in Figure 5.

B. Backward Motion Segmentation

After performing the forward motion segmentation, the
algorithm basically repeats the same procedure it used to
find the forward foreground-background segmentation with the
roles of frames Ri and Rj interchanged.

1) Initialization: The initial motion segmentation is more
accurate in the backward case than it was in the forward case.
This is because of the availability of the forward motion hints.
The initial values of the backward motion hints are generated
as follows.

M (Rj→Ri)
n =

(
M (Ri→Rj)

n

)−1
n = 1, 2.

Unlike in Section II-A1 where we started with foreground-
background seeds and then obtained the initial forward motion
hints, the backward initialization starts with motion hints and
then finds the shapes using motion compensated prediction
errors and a color based segmentation of Ri that partitions
this frame into super-pixels.

2) Iterative Motion Estimation-Shape Refinement: The es-
timated seeds in the backward case are composed of super-
pixels. Therefore they can be fed into the iterative motion
estimation-shape refinement paradigm discussed in Section
II-A3 straightaway with the same parameter values used in
the forward case and it is possible to obtain the converged
backward motion hints and the segmentation of Figure 6.



(a) F ∗j = f∗j ·Rj (b) Bj = bj ·Rj

Fig. 7. Foreground and background of Rj respectively.

(a) F ∗i = f∗i ·Ri (b) Bi = bi ·Ri

Fig. 8. Foreground and background of Ri respectively.

C. Prediction of the Current Frame

1) Bi-directional Foreground Correction: The estimated
segmentations of Ri and Rj are now improved using the
segmentation information available in both reference frames.
At this stage the algorithm requires the knowledge of which
region is the foreground of Ri and Rj . In the remainder of
this example Region 2 is considered to be the foreground and
Region 1 to be the background. The algorithm makes use of
binary images, which we refer to as masks. These masks have
a value of 1 to indicate that a pixel belongs to a region and 0
elsewhere in the image.

The foreground correction approach starts with the existing
foreground mask for example of Rj which will be denoted
by fj herein and then forms a new foreground mask f∗j using
the intersection between the existing mask fj and the forward
foreground motion compensated foreground mask from Ri.

f∗i = M
(Rj→Ri)
2

(
fj
)
∩ fi

where M
(Rj→Ri)
2

(
fj
)

denotes applying the motion hint
M

(Rj→Ri)
2 to the foreground mask fj . Similarly, f∗i is the

new foreground mask formed in Ri and is given by:

f∗j = M
(Ri→Rj)
2

(
fi
)
∩ fj

Note that the new foreground masks f∗i and f∗j are now related
through the forward/backward foreground motion hints. For
example, f∗j = M

(Ri→Rj)
2

(
f∗i
)
, apart from numerical approxi-

mations introduced by the warping process and any differences
which might exist between M

(Ri→Rj)
2 and

(
M

(Ri→Rj)
2

)−1
.

(a) B∗j (b) B∗i

Fig. 9. The modified backgrounds with uncovered regions.

The remaining parts of Ri and Rj are declared to be back-
ground masks and are given by:

bi = 1− f∗i

bj = 1− f∗j

The foreground and background regions, denoted by F ∗i , F ∗j ,
Bi and Bj , found by multiplying the reference frames with
these masks are shown in Figures 7 and 8.

2) Uncovered Regions Determination and Background
Modification: New background masks b∗i and b∗j are now
formed by determining the uncovered regions in Rj and Ri

and then adding them to the existing background regions bi
and bj respectively. The modified backgrounds are shown in
Figure 9.

3) Projection onto the Current Frame: To predict the cur-
rent frame C, the proposed approach now has all the required
ingredients. It starts by estimating the motion hints M

(Ri→C)
2

and M
(Rj→C)
2 . The predicted foreground mask f̂c is generated

by taking the intersection between these motion compensated
foreground masks as follows:

f̂c =
(
M

(Ri→C)
2

(
f∗i
))
∩
(
M

(Rj→C)
2

(
f∗j
))

The predicted background mask b̂c is generated by using
the old background masks to find the motion hints and then
warping the new ones with these hints.

b̂c =
(
M

(Ri→C)
1

(
b∗i
))
∪
(
M

(Rj→C)
1

(
b∗j
))

Using these background and foreground masks, the predic-
tion Ĉ is generated in the following way:

F̂c =
(
M

(Ri→C)
2

(
Ri

)
+M

(Rj→C)
2

(
Rj

))
· f̂c

B̂c =
(
M

(Ri→C)
1

(
B∗i
)
+M

(Rj→C)
1

(
B∗j
))
· b̂c

Ĉ = F̂c + (1− f̂c) · B̂c



III. FOREGROUND-BACKGROUND SHAPE INITIALIZATION

Due to the tightly coupled nature of the relationship between
motion and shape it is necessary to initialize the algorithm
described in the previous section with distinctive enough
foreground-background shapes. We propose to do this by de-
riving the initial forward motion hints using only blocks where
the motion vectors are deemed reliable. However this objective
should be accomplished in a computationally simple way and
thereby not significantly increase the overall complexity of the
prediction paradigm. In this Section we investigate 4 different
motion reliability estimators that produce a set of blocks with
reliable motion which are then clustered based on their motion
vectors to obtain the shape seeds.

Long et al. [15] showed that the ratio rl between the
low frequency energy in a phase-matched frame difference
(PMFD) [15] image block and the total energy in that block
can be used as a measure of motion reliability for the cor-
responding block of Rj . Blocks with high rl are deemed to
be unreliable. We have found in our experimental evaluation
that, when applied to motion reliability detection, the perfor-
mance of the PMFD image based rl measure can be very
well matched by the performance of rl calculated from the
displaced frame difference (DFD) image and the DFD based
rl is comparatively easy to calculate because the DFD image is
a direct consequence of motion estimation and compensation
between Ri and Rj . The rl measure of a DFD image block
is calculated in the following way:

rl =
El

Et

where El and Et denote the amount of low frequency energy
and the total energy in a DFD block respectively.

The next approach for motion reliability that we consider
is also a by-product of the block-based motion estimation
and compensation between the frames Ri and Rj . While
performing the block based translational motion estimation for
each block to be matched in the previous frame, the sum of
absolute differences (SADs) between that block and all the
candidate blocks within the search window are stored. The
kurtosis of the distribution of these SADs can be used as
an indicative measure of the estimated local motion vector’s
reliability [16]. Since blocks in flat image regions will be
matched to many blocks in the neighbourhood, their SAD
distribution are expected to have low kurtosis which in turn
suggests they have unreliable motion. On the other hand blocks
with corners or texture patterns can have reliable local motion
estimation which is evident from the high kurtosis of their
SAD distributions.

In [17] motion vectors which are found in regions with little
or no texture or a moving object boundary and regions with
repetitive texture patterns are deemed as ”noisy”. A filter is
used to examine the magnitude and phase difference between
a motion vector and its 8-adjacency neighbors and then a
fraction of the available motion vectors was removed based
on spatial dissimilarity. For our work, we consider the blocks
that help to keep the motion vector field smooth as reliable.

And to keep things simple we only consider the motion vector
magnitude difference and use a threshold to count the number
of neighbouring blocks, in the 8-adjacency neighborhood, with
motion that is dissimilar to the current block. If the majority
of a block’s neighbours are found to have dissimilar motion,
the motion vector of the block is assumed to be unreliable and
is not used in the subsequent clustering process.

Xu et al. [18] employed a multi-scale block-based approach
for motion estimation that generates a dense motion field.
Their approach involves applying a 2-bit transform to each
detail band in the Laplacian pyramid representation of each
video frame; motion search is then performed on the trans-
formed detail bands at each detail level, employing different
apertures, to generate a matching score for each location and
amount of spatial shift. These scores are then combined across
the detail levels, using the structural measure proposed in [19],
to generate an overall score for each location and amount
of shift, where the motion estimate with the highest score
is chosen. This approach tends to produce motion fields that
better reflect the true underlying motion than those obtained
using MSE as a matching criterion, while also being more
robust to noise and illumination variations, as shown in [18].
For our work we use the matching score of the center pixel
of a block to determine its reliability.

Next we investigate the performance of the discussed ini-
tialization approaches on the QCIF sequences Foreman, Hand
held Mobile phone where a person mimics video conferencing
on a mobile phone by recording himself talking and at the
same time moving while the mobile phone is in his right hand
and Stair [13] where a person is walking and another person
is following him and recording him with a hand-held camera.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the foreground-background
seed generation approaches, we clustered the reliable blocks
returned by each approach and thereby generated the initial
foreground-background segmentation. Block sizes of 4 × 4,
8×8 and 16×16 were tested. This initial segmentation infor-
mation is fed into the inter-frame prediction paradigm which
performed motion estimation and compensation between pairs
of frames from the aforementioned video sequences. The
reference frame pairs were used to predict two intervening
frames and 10 such pairs were used i.e. we predicted 20
intervening frames. The prediction quality is measured in
terms of the PSNR and the average results are reported in
Tables I-III. Figure 10 shows an example of the current frame
and prediction frame produced by the algorithm when using
the 2-bit transform-based initialization.

TABLE I
Average PSNR (in dB) between the predicted and current frames for the

Foreman sequence

4× 4 8× 8 16× 16
rl 36.66 36.85 37.07
SADkurtosis 36.63 37.01 37.61
MVsmooth 37.21 37.37 37.47
2bit 37.72 37.24 36.35



(a) C (b) Ĉ

Fig. 10. The outcome of the prediction paradigm with the 2-bit transform
based initialization strategy (used block size = 4× 4).

TABLE II
Average PSNR (in dB) between the predicted and current frames for the

Hand held Mobile phone sequence

4× 4 8× 8 16× 16
rl 35.19 35.65 35.72
SADkurtosis 35.73 35.89 35.98
MVsmooth 35.05 35.98 35.72
2bit 35.95 36.27 35.12

TABLE III
Average PSNR (in dB) between the predicted and current frames for

theStair sequence

4× 4 8× 8 16× 16
rl 34.07 34.54 34.85
SADkurtosis 34.45 34.52 35.01
MVsmooth 34.06 34.21 34.55
2bit 35.14 34.46 34.41

Firstly, it can be observed from the results that the 2bit
transform-based approach performs the best for all the 3 video
sequences. This is expected because of its ability to estimate
the true underlying motion better than the traditional motion
estimation approaches that uses MSE or SAD as the matching
criterion. Note that this measure performed the best when
smaller block sizes were utilized. Alternatively, the rl and
kurtosis-based initialization approaches perform better with
bigger block sizes. This is because, for smaller blocks, the ratio
rl would most of the time be high therefore many false posi-
tives may happen. For the kurtosis-based approach, a smaller
current block may match too many smaller blocks in the
neighborhood and hence the SAD distribution is expected to
have low kurtosis. The kurtosis-based approach using 16× 16
block sizes performed second best to the 2-bit transform-based
approach. It has an advantage over the 2-bit transform based
approach in that it is computationally simpler and produces a
smaller number of reliable blocks to be clustered.

V. CONCLUSION

In this paper, we have investigated the performance of a
variety of motion reliability based segmentation initialization
strategies for a segmentation-based prediction algorithm. The
prediction performance of this algorithm when using initial
segmentations generated by these motion reliability based

strategies is taken as the criterion to compare their relative
performance. We have found in our experiments that the 2-bit
transform based motion reliability approach showed the best
performance in terms of high PSNR.
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